全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

复杂载荷下轴流压气机叶片疲劳损伤数值研究
Numerical Study on the Fatigue Damage of Compressor Blade under Complex Loads

DOI: 10.7652/xjtuxb201705021

Keywords: 压气机叶片,复杂载荷,多级加载,疲劳损伤,数值计算
compressor blade
,complex load,multi??level loading,fatigue damage,numerical calculation

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高叶片的服役寿命,针对压气机叶片疲劳损伤进行了数值研究。在获取叶片表面气动压力及强度分布的基础上,结合非线性连续损伤力学模型,得到叶片多级加载损伤累积方程,提出了开展结构寿命预测和损伤评估的数值计算方法。对轴流压气机叶片在典型工况转速下受离心、气动复杂载荷作用下的应力分布规律和疲劳损伤行为进行了分析。计算结果表明:叶片排气侧4%叶高处有明显的应力集中,容易发生疲劳失效;在叶片疲劳加载过程中,损伤累积速率逐渐增大,加载周期的末期易发生瞬时断裂;考虑载荷顺序对损伤累积行为的影响,和Miner线性损伤模型相比,多级加载损伤模型体现了损伤演化过程的非线性,计算结果更为准确。
In order to improve the service life of blades, the fatigue damage of compressor blade is studied by numerical method. The methods of structural fatigue life prediction and damage assessment is proposed, including blade aerodynamic pressure calculation using computational fluid dynamics (CFD), structural strength analysis based on FEM under different working conditions, and Chaboche fatigue life prediction and damage accumulation equation under multi??level loading by nonlinear continuum damage mechanics. The fatigue damage analysis on an aero??engine high??pressure compressor blade is carried out by this method under aerodynamic and centrifugal loads in typical working conditions. Results indicate that the exhaustion edge in blade root has distinct stress concentration, and it is the dangerous location where fatigue failure is liable to occur. In the process of fatigue loading, the rate of damage accumulation gradually increases, and the blade fractures instantaneously in the end of the loading cycle. Considering the effect of load sequence on damage accumulation behavior, the multi??level loading damage model can reflect the nonlinearity of damage evolution and achieve more accurate calculations compared with Miner linear damage model

References

[1]  [8]CHABOCHE J L, LESNE P M. A non??linear continuous fatigue damage model [J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(1): 1??17.
[2]  [10]岳珠峰, 于庆民, 温志勋, 等. 镍基单晶涡轮叶片结构强度设计 [M]. 北京: 科学出版社, 2008: 19??39.
[3]  [4]DHOPADE P, NEELY A J. Aeromechanical modeling of rotating fan blades to investigate high??cycle and low??cycle fatigue interaction [J]. Journal of Engineering for Gas Turbines & Power, 2014, 137(5): 052505.
[4]  [5]NI K, WANG X Q, MIGNOLET M. Blade stress estimation during multiple vibratory modes [EB/OL]. [2016??08??29]. http: ∥arc??aiaa??org/doi/pdf/10??2514 /6??2013??1772.
[5]  [1]陶春虎, 钟培道, 王仁智, 等. 航空发动机转动部件的失效与预防 [M]. 北京: 国防工业出版社, 2000: 6??40.
[6]  [2]LEE C D. Effect of strain rate on elastic??plastic deformation in high cycle fatigue properties [J]. Metals & Materials International, 2014, 20(6): 1027??1035.
[7]  [3]李骏, 宋友辉, 刘汉斌, 等. 涡轮叶片?查就藩猜峙痰娜浔溆氲脱?环疲劳寿命预测 [J]. 推进技术, 2015, 36(11): 1699??1704.
[8]  LI Jun, SONG Youhui, LIU Hanbin, et al. Creep and low cycle fatigue life prediction for turbine blade??tenon??disk structure [J]. Journal of Propulsion Technology, 2015, 36(11): 1699??1704.
[9]  [6]陶海亮, 朱阳历, 郭宝亭, 等. 压气机叶片流固耦合数值计算 [J]. 航空动力学报, 2012, 27(5): 1054??1060.
[10]  TAO Hailiang, ZHU Yangli, GUO Baoting, et al. Numerical simulation of aeroelastic response in compressor based on fluid??structure coupling [J]. Journal of Aerospace Power, 2012, 27(5): 1054??1060.
[11]  [7]张小丽, 陈雪峰, 李兵, 等. 机械重大装备寿命预测综述 [J]. 机械工程学报, 2011, 47(11): 100??116.
[12]  ZHANG Xiaoli, CHEN Xuefeng, LI Bing, et al. Review of life prediction for mechanical major equipments [J]. Journal of Mechanical Engineering, 2011, 47(11): 100??116.
[13]  [9]林杰威. 涡扇发动机风扇叶片疲劳寿命评估与可靠性分析 [D]. 天津: 天津大学, 2013: 22??36.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133