全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

联合时延与多普勒频率的直接定位改进算法
An Improved Direct Position Determination Algorithm with Combined Time Delay and Doppler

DOI: 10.7652/xjtuxb201504020

Keywords: 直接定位,最大似然,无源定位,特征值分解,克拉美罗下界
direct position determination
,maximum likelihood,passive location,eigenvalue decomposition,Cramér??Rao lower bound

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统两步定位算法中测量参数不能保证与真实位置匹配,导致信息损失,产生定位误差的问题,提出了一种联合时延与多普勒频率的直接定位改进(IDPD)算法。首先采用高斯最大似然估计器,将从数据中提取目标位置信息的问题转化为求解包含发射源位置信息的厄尔米特矩阵的最大特征值问题;然后利用矩阵转置后特征值相同这一性质进行简化运算;最后通过二维地理网格搜索以获取发射源的位置估计。较之传统的直接定位(DPD)算法,IDPD算法对信号无要求,且利用极大特征值作为网格点的代价函数,抑制了噪声的影响,提高了定位精度。仿真结果表明,IDPD算法在低信噪比条件下对目标位置估计误差在102 m量级,与DPD算法相比,定位精度提高了30%以上,更加逼近克拉美罗下界。
An improved direction position determination (IDPD) algorithm with combined time delay and Doppler is proposed to solve the problem of positioning errors due to the information loss from the mismatch between measured parameters and actual location in traditional two steps localization algorithm. A Gaussian maximum likelihood estimator is employed to transform the problem of extracting target position information into the problem of calculating the maximum eigenvalue of a Hermite matrix which contains the emitter’s location information. Then, the property of eigenvalue keeping unchanged after matrix transpose is used to simplify the calculation. The emitter’s position is finally estimated through the search of two??dimensional geo??grid. Compared with the traditional direct position determination (DPD) algorithm, the IDPD does not need any special requirements for signals and restrains the effect of noise by taking the maximum eigenvalue as the cost function, therefore the position accuracy can be improved. Simulation results show that the performance of the proposed algorithm reaches a 102 meter magnitude even under low signal to noise ratio. Comparison with the DPD shows that the positioning accuracy of the IDPD increases by 30% and is closer to the Cramér??Rao lower bound

References

[1]  [9]束峰, 朱伟强, 陆锦辉, 等. 基于最大比合并的最大似然TDOA/FDOA联合定位算法 [J]. 宇航学报, 2010, 31(4): 1143??1148.
[2]  SHU Feng, ZHU Weiqiang, LU Jinhui, et al. Maximum ration combing based maximum likelihood TDOA/FDOA joint localization [J]. Journal of Astronautics, 2010, 31 (4): 1143??1148.
[3]  [13]AMAR A, WEISS A J. Localization of radio emitters based on Doppler frequency shifts [J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5500??5508.
[4]  [14]HUANG Ling, LU Yilong. Performance analysis of direct position determination for emitter source positioning [J]. American Journal of Signal Processing, 2012, 2(3): 41??45.
[5]  [1]XU Jun, MA Maode, LAW C L. AOA cooperative position localization [C]∥IEEE Global Telecommunications Conference on Signal Processing. Piscataway, NJ, USA: IEEE, 2008: 1??5.
[6]  [2]OH D, KIM S, YOON S H, et al. Two??dimensional ESPRIT??like shift??invariant TOA estimation algorithm using multi??band chirp signals robust to carrier frequency offset [J]. IEEE Transactions on Wireless Communications, 2013, 12(7): 3130??3139.
[7]  [3]GARDNER W A, CHEN C K. Signal??selective time??difference??of??arrival estimation for passive location of man??made signal sources in highly corruptive environments: part ITheory and method [J]. IEEE Transactions on Signal Processing, 1992, 40(5): 1168??1184.
[8]  [4]杨洁, 刘聪锋. 迭代频差定位算法及其性能分析 [J]. 西安电子科技大学学报, 2014, 40(5): 8??14.
[9]  YANG Jie, LIU Congfeng. Iteration FDOA location algorithm and its performance analysis [J]. Journal of Xidian University, 2014, 40(5): 8??14.
[10]  [5]KOWEERAWONG C, WIPUSITWARAKUN K, KAEMARUNGSI K. Indoor localization improvement via adaptive RSS fingerprinting database [C]∥2013 International Conference on Information Networking. Piscataway, NJ, USA: IEEE, 2013: 412??416.
[11]  [6]HO K C, CHAN Y T. Geolocation of a known altitude object from TDOA and FDOA measurements [J]. IEEE Transactions on Aerospace Electron System, 1997, 33(3): 770??783.
[12]  [7]曲付勇, 孟祥伟. 基于约束总体最小二乘方法的到达时间差到达频差无源定位算法 [J]. 电子与信息学报, 2014, 36(5): 1075??1080.
[13]  QU Fuyong, MENG Xiangwei. Source localization using TDOA and FDOA measurements based on constrained total least squares algorithm [J]. Journal of Electronic and Information Technology, 2014, 36(5): 1075??1080.
[14]  [8]YEREDOR A, ANGEL E. Joint TDOA and FDOA estimation: a conditional bound and its use for optimally weighted localization [J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1612??1623.
[15]  [10]DORON M A, WEISS A J. Maximum likelihood localization of wideband sources [C]∥IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway, NJ, USA: IEEE, 1992: 23??26.
[16]  [11]WEISS A J. Direct position determination of OFDM signals [J]. IEEE Transactions on Signal Processing Letters, 2007, 44(6): 225??230.
[17]  [12]WEISS A J. Direct geolocation of wideband emitter based on delay and Doppler [J]. IEEE Transactions on Signal Processing, 2011, 59(6): 2513??2521.
[18]  [15]AMAR ALON, WEISS A J. Direct position determination in the presence of model errors??known waveforms [J]. Elsevier Digital Signal Processing, 2006, 16: 52??83.
[19]  [16]KAY S M. Fundamentals of statistical signal processing: estimation and detection theory [M]. Beijing, China: Publishing House of Electronics Industry, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133