全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

升空过程中低温液氧贮箱压力变化及热分层研究
Research on Pressure Change and Thermal Stratification of Cryogenic Liquid Oxygen Tank during the Ascent Process

DOI: 10.7652/xjtuxb201611015

Keywords: 升空过程,气动热,空间辐射,压力变化,热分层
ascent process
,aerodynamic heat,space radiation,tank pressure change,thermal stratification

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对火箭升空过程,通过编写用户自定义程序详细考虑了气动热以及空间辐射热的影响,数值研究了低温液氧箱体压力变化及流体热分层现象。在计算过程中,着重考虑了大气物性参数随高度的变化、飞行过程中加速度变化与气液界面相变对箱体压力以及箱内流体温度分布的影响。模拟结果表明:气动热对箱体控压频率产生了较大的影响。随着气动热流的增加,箱体增压时间变短,降压时间变长。在飞行120 s时,气动热流达到最大,其对箱体压增性能的影响也最为突出,此时箱体增压时间最短为4 s,箱体降压时间最长,约13 s。在无排液阶段,箱体压力呈现波动变化,气液界面处气枕被冷凝。在该过程中,液相质量增加了11.05 kg,气相质量减少了1.52 kg。在增压排液阶段,尽管增压气体持续注入箱内,箱体压力仍逐渐减小,而气相质量则呈波动增加。随着时间的延长,气液相温度均向温度升高的方向推进。由于空间辐射漏热造成了排液温度的升高,给发动机运行带来安全隐患,应采取有效绝热措施来减少空间漏热。
A numerical simulation method was adopted to study the pressure change and fluid thermal stratification in liquid oxygen tank during the ascent process by a user??defined function (UDF) considering the aerodynamic heat and space radiations. The influences of atmosphere physical parameters, flight acceleration and phase change occurring in the liquid??vapor interface on the tank pressure and fluid temperature distribution were taken into account in the present numerical model. The calculation results showed that aerodynamic heat has great influence on the tank pressurization frequency and with the increase of aerodynamic heat flux, the tank pressurization time increases and depressurization time reduces gradually. After 120 s flight, the aerodynamic heat flux reaches its maximum value, and its influence on the tank pressurization behavior becomes most prominent. At this moment, the minimum tank pressure rise time and the maximum tank pressure reduction time are 4 s and 13 s, respectively. During the pressurization process without outflow, the tank pressure fluctuates within the set pressure range, and the phase change is condensation at the interface. The liquid mass increases about 11.05 kg while the ullage mass decreases about 1.52 kg in this process. When it is in the outflow period, the tank pressure decreases with the continuous injection of pressurized gas, and the ullage mass shows a fluctuating increase. Both the gas and liquid temperatures boost to higher temperatures with time. As the space radiation leakage leads to the temperature increase of drainage liquid, and hence resulting in safety issues for the rocket engine, some effective measures should be taken to reduce the space leakage

References

[1]  ZHANG Chao, LU Xuesheng, TIAN Liting. The numerical model of rocket cryogenic liquid propellant pressurization system [J]. Cryogenic and Superconductivity, 2005, 33(2): 35??38.
[2]  [3]陈阳, 张振鹏, 杨思锋, 等. 低温推进剂贮箱增压系统分布参数数值仿真: Ⅱ增压系统数值模型与仿真结果 [J]. 航空动力学报, 2008, 23(2): 329??335.
[3]  CHEN Yang, ZHANG Zhenpeng, YANG Sifeng, et al. Distributed parameter numerical simulation for the transients of cryogenic propellant tank pressurization system: ⅡNumerical model and simulation results of pressurization system [J]. Journal of Aerospace Power, 2008, 23(2): 329??335.
[4]  LIU Zhan, LI Yanzhong, WANG Lei, et al. Evaporation calculation and pressurization process of on??orbit cryogenic liquid hydrogen storage tank [J]. Journal of Xi’an Jiaotong University, 2015, 49(2): 135??140.
[5]  [5]LIU Z, WANG L, JIN Y, et al. Development of thermal stratification in a rotating cryogenic liquid hydrogen tank [J]. International Journal of Hydrogen Energy, 2015, 40(43): 15067??15077.
[6]  [7]LIU Z, LI Y, XIE F, et al. Thermal performance of foam/MLI for cryogenic liquid hydrogen tank during the ascent and on orbit period [J]. Applied Thermal Engineering, 2015, 98: 430??439.
[7]  LIU Zhan, SUN Peijie, LI Peng, et al. Research on thermal stratification of cryogenic liquid oxygen tank in microgravity [J]. Cryogenics, 2016(1): 25??31.
[8]  [9]闵桂荣. 卫星热控制技术 [M]. 北京: 中国宇航出版社, 1991: 5??40.
[9]  LIU Zhan, SUN Peijie, LI Peng, et al. Research on thermal physical process of cryogenic liquid oxygen tank during the ground parking [J]. Journal of Xi’an Jiaotong University, 2016, 50(9): 36??42.
[10]  [8]刘展, 孙培杰, 李鹏, 等. 微重力下低温液氧贮箱热分层研究 [J]. 低温工程, 2016(1): 25??31.
[11]  [1]张超, 鲁雪生, 田丽亭. 火箭低温液体推进剂增压系统数学模型 [J]. 低温与超导, 2005, 33(2): 35??38.
[12]  [6]WANG L, LI Y, ZHAO Z, et al. Transient thermal and pressurization performance of LO2 tank during helium pressurization combined with outside aerodynamic heating [J]. International Journal of Heat & Mass Transfer, 2013, 62(1): 263??271.
[13]  [10]刘展, 孙培杰, 李鹏, 等. 地面停放低温液氧贮箱热物理过程研究 [J]. 西安交通大学学报, 2016, 50(9): 36??42.
[14]  [2]ZILLIAC G, KARABEYOGLU M A. Modeling of propellant tank pressurization [C]∥Proceedings of 41st AIAA/ASME/SAE/ASEE Joint Propulsion Con??ference & Exhibit. Reston, VA, USA: AIAA, 2005: 1??25.
[15]  [4]刘展, 厉彦忠, 王磊, 等. 在轨运行低温液氢箱体蒸发量计算与增压过程研究 [J]. 西安交通大学学报, 2015, 49(2): 135??140.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133