|
- 2016
模型下的陕西省节能与温室气体 减排潜力分析
|
Abstract:
为应对日益严峻的气候变化及能源危机,探索高效的节能减排政策,完成相关政策的定量评价,基于陕西省统计年鉴,结合陕西省实际情况,建立了包含终端能源需求、能源加工转换、资源供应及温室气体排放4模块的陕西省LEAP模型。在对陕西省未来人口、经济发展情况进行预测的基础上,利用该模型对不同政策情景下未来陕西省的能源消耗及温室气体排放情况做出了预测,完成了相关政策的定量评价及节能减排潜力分析。结果表明:随着各项节能减排政策的实施,陕西省的能源消耗量及温室气体排放量均有所降低,在所建立的节能减排综合情景下,2030年陕西省一次能源消耗量与基准情景相比可望降低20.35%,温室气体排放量将降低27.29%;从节能减排技术来看,可再生能源发电技术节能减排成效显著;从用能部门来看,工业、交通及发电部门贡献水平最高。总体来说,陕西省节能减排潜力巨大。
In order to deal with the increasingly severe climate change and energy crisis, explore efficient energy conservation and GHG emission reduction policies and complete the quantitative evaluation of relevant policies, the LEAP model of Shaanxi Province is established according to the Shaanxi statistical yearbook and combined with the actual situation of Shaanxi Province. This LEAP model includes four parts: energy demand module, energy transformation module, resources supply module and GHG emission module. And based on the forecast of the development in population and economy of Shaanxi Province this paper has made a prediction on the energy consumption and GHG emission of Shaanxi Province in different policy scenarios, and conducted an analysis of the energy conservation and GHG emission reduction potential of the relevant policies. The results show that with the implementation of various policies, Shaanxi Province’s energy consumption and GHG emission will be decreased with the implementation of various energy conservation and emission reduction policies. The primary energy consumption of Shaanxi Province in 2030 is expected to be decreased by 20.35% compared with the baseline scenario; the GHG emission will be reduced by 27??29% The renewable energy generation technology has made a great progress in energy conservation and GHG emission reduction, and most contribution to energy conservation and emission reduction was made in industry, transportation and power generation. So, generally speaking, Shaanxi Province has enormous potential in energy conservation and GHG emission reduction
[1] | [1]李建刚. 生物质成型设备优化设计及实验研究 [D]: 青岛: 青岛大学, 2012. |
[2] | [8]孙彩云, 杨晓静. 乘积ARIMA模型的建立及应用 [J]. 华北科技学院学报, 2008(2): 85??89. |
[3] | XU Mingchen, WANG Anjian, CHEN Qishen, et al. Trend analysis of China’s energy consumption intensity [J]. Acta Geoscientica Sinica, 2010(5): 720??726. |
[4] | LIU Zhen, ZHU Kaiwei, YAN Jianming. Scenario design, analysis and evaluation on carbon emission reduction in power industry [J]. Power System Technology, 2012, 36(6): 1??7. |
[5] | QI Zhixin, CHEN Wenying, WU Zongxin. The influence of industrial weight structure changes on energy consumption [J]. China Industrial Economy, 2007(2): 35??42. |
[6] | [3]STEPHANE DE IA R D, LYNN P. Sectoral trends in global energy use and greenhouse gas emissions [J]. Energy Policy, 2008, 36(4): 1386??1403. |
[7] | [4]张颖, 王灿, 王克, 等. 基于LEAP的中国电力行业CO2排放情景分析 [J]. 清华大学学报(自然科学版), 2007, 47(3): 365??368. |
[8] | ZHANG Ying, WANG Can, WANG Ke, et al. CO2 emission scenario analysis for China’s electricity sector based on LEAP software [J]. Journal of Tsinghua University (Science & Technology), 2007, 47(3): 365??368. |
[9] | CHANG Zheng, PAN Kexi. An analysis of Shanghai’s long??term energy consumption and carbon emission based on LEAP model [J]. Contemporary Finance & Economics, 2014(1): 98??106. |
[10] | SUN Caiyun, YANG Xiaojing. Establish and application of multiply ARIMA model [J]. Journal of North China Institute of Science and Technology, 2008(2): 85??89. |
[11] | LI Shantong. Prospects of China’s economic growth in the period of 12th Five??Year to 2030 [J]. Review of Economic Research, 2010(43): 2??27. |
[12] | [11]刘贞, 朱开伟, 阎建明. 电力行业碳减排情景设计与分析评价 [J]. 电网技术, 2012, 36(6): 1??7. |
[13] | WANG Ke, WANG Can, LU Xuedu, et al. Abatement potential of CO2 emissions from China’s iron and steel industry based on LEAP [J]. Journal of Tsinghua University (Science & Technology), 2006, 46(12): 1982??1986. |
[14] | [7]王学保, 蔡果兰. Logistic模型的参数估计及人口预测 [J]. 北京工商大学学报(自然科学版), 2009, 27(6): 75??77. |
[15] | WANG Xuebao, CAI Guobao. Parameter evaluation of Logistic model and population prediction [J]. Journal of Beijing Technology and Business University(Natural Science Edition), 2009, 27(6): 75??77. |
[16] | [9]李善同. “十二五”时期至2030年我国经济增长前景展望 [J]. 经济研究参考, 2010(43): 2??27. |
[17] | [10]徐铭辰, 王安建, 陈其慎, 等. 中国能源消费强度趋势分析 [J]. 地球学报, 2010(5): 720??726. |
[18] | [12]齐志新, 陈文颖, 吴宗鑫. 工业轻重结构变化对能源消费的影响 [J]. 中国工业经济, 2007(2): 35??42. |
[19] | [13]潘鹏飞. 基于LEAP模型的河南省交通运输节能减排潜力分析 [D]. 郑州: 河南农业大学, 2014. |
[20] | [2]李延峰. 不确定优化方法在能源规划中的应用 [D]: 北京: 华北电力大学, 2010. |
[21] | [5]王克, 王灿, 吕学都, 等. 基于LEAP的中国钢铁行业CO2减排潜力分析 [J]. 清华大学学报(自然科学版), 2006, 46(12): 1982??1986. |
[22] | [6]常征, 潘克西. 基于LEAP模型的上海长期能源消耗及碳排放分析 [J]. 当代财经, 2014(1): 98??106. |