全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

谱元法应用于涡声传播问题的研究
Investigation of Vortex Sound Propagation Using Spectral Element Method

DOI: 10.7652/xjtuxb201611017

Keywords: 计算气动声学,谱元法,声比拟理论,吸收边界条件,有限元,同向旋转涡对
computational aero??acoustics
,spectral element method,acoustic analogy theory,absorbing boundary condition,finite element method,co??rotating spinning vortex pair

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了满足计算气动声学对低色散、低耗散高精度数值离散格式的需求,将高精度谱元法结合声比拟理论应用于求解气动声学问题。以伪声压的时间二阶导数作为非齐次波动方程的声源项,空间离散采用谱元法,时间离散应用隐式Newmark法,并在外边界采用C-E-M吸收边界条件,求解了由两个相距为2r0的等环量点涡组成的同向旋转涡对的发声问题。旋转涡对的不可压缩流场通过复位势理论获得,声源由流场量计算得来,并将数值结果与应用多级匹配展开法得到的解析解进行比较,可得数值解与分析解吻合较好。研究结果表明:应用高精度谱元法进行空间离散时,每波长的网格数为11时可达到很高的精度;网格数一定的情况下,时间步长越小得到的数值解与分析解之间的误差就越小;另外,证明了将伪声压对时间的二阶导数作为声源项,能够高精度求解不可压缩流动引起的气动声学问题。
In order to meet the requirements of low dispersive and low dissipative numerical discretization schemes in computational aero??acoustics, the spectral element method combined with Lighthill’s acoustic analogy theory for the simulation of aeroacoustic problems is investigated. Taking the second temporal derivative of pseudopressure as the source of the inhomogeneous wave equation, and space discretization using spectral element method time discretization using implicit Newmark method, under the C??E??M absorbing boundary condition the acoustic field generated by a co??rotating spinning vortex pair is solved. This co??rotating vortex pair consists of two point vortices separated by a fixed distance of 2r0 with a circulation intensity Γ. The incompressible flow field is obtained using the complex potential theory, and the acoustic source terms are computed using these hydrodynamic quantities. The acoustic pressure results are evaluated by comparing them with the analytical solution obtained from the matched asymptotic expansion (MAE) method The numerical solutions are in good agreement with the analytical solutions. The results show that the spectral element method can obtain high accuracy using only eleven grids in one wavelength. In the case of the same number of grids, the smaller the time step, the smaller the error between numerical solution and analytical solution. Finally, it is proved that the aero??acoustic problems induced by incompressible flows can be solved with high accuracy by using the second temporal derivative of the pseudopressure as the acoustic source

References

[1]  LI Xiaodong, JIANG Min, GAO Junhui, et al. Progress and prospective of computational aeroacoustics [J]. Science China: Physics, Mechanics & Astronomy, 2014(3): 234??248.
[2]  [5]徐康乐, 陈迎春, 陶俊, 等. 低马赫数条件下气动声场流场分裂求解方法研究 [J]. 复旦学报(自然科学版), 2014, 53(5): 636??644.
[3]  [6]H?aPPE A, KALTENBACHER M. Spectral finite elements for computational aeroacoustics using acoustic perturbation equations [J]. Journal of Computational Acoustics, 2012, 20(2): 1240005.
[4]  [7]ALI I, ESCOBAR M, KALTENBACHER M, et al. Time domain computation of flow induced sound [J]. Computers & Fluids, 2008, 37(4): 349??359.
[5]  [8]ZHU W J, SHEN W Z, S?hRENSEN J N. High??order numerical simulations of flow??induced noise [J]. International Journal for Numerical Methods in Fluids, 2011, 66(1): 17??37.
[6]  [9]HARDIN J, POPE D. An acoustic/viscous splitting technique for computational aeroacoustics [J]. Theoretical and Computational Fluid Dynamics, 1994, 6(5/6): 323??340.
[7]  [20]朱昌允, 秦国良, 徐忠. 谱元方法求解波动方程及影响其数值精度的相关因素 [J]. 西安交通大学学报, 2008, 42(1): 56??59.
[8]  ZHU Changyun, QIN Guoliang, XU Zhong. Implicit spectral element method for wave equation and some factors influencing numerical accuracy [J]. Journal of Xi’an Jiaotong University, 2008, 42(1): 56??59.
[9]  [2]LELE S K, NICHOLS J W. A second golden age of aeroacoustics [J]. Philosophical Transactions of the Royal Society of London: AMathematical, Physical and Engineering Sciences, 2014, 372(2022): 20130321.
[10]  [10]FARSHCHI M, HANNANI S K, EBRAHIMI M. Linearized and nonlinear acoustic/viscous splitting techniques for low Mach number flows [J]. International Journal for Numerical Methods in Fluids, 2003, 42(10): 1059??1072.
[11]  [11]EKATERINARIS J A. New formulation of Hardin??Pope equations for aeroacoustics [J]. AIAA Journal, 1999, 37(9): 1033??1039.
[12]  [12]EKATERINARIS J A. An upwind scheme for the computation of acoustic field generated by incompressible flow [J]. AIAA Journal, 1997, 35(1): 14481455.
[13]  [13]ZHU C, QIN G, ZHANG J. Implicit Chebyshev spectral element method for acoustics wave equations [J]. Finite Elements in Analysis and Design, 2011, 47(2): 184??194.
[14]  [14]ZHANG R, QIN G, ZHU C. Spectral element method for acoustic propagation problems based on linearized Euler equations [J]. Journal of Computational Acoustics, 2009, 17(4): 383??402.
[15]  [15]RIBNER H S. The generation of sound by turbulent jets [J]. Advances in Applied Mechanics, 1964, 8: 103182.
[16]  [16]PAPAGEORGAKOPOULOS J, TSANGARIS S. A numerical method for predicting acoustical wave propagation in open spaces [J/OL]. [2016??04??06]. https:∥www.hindawi.com/journals/isrn/2011/174031/abs/.
[17]  [17]CLAYTON R, ENGQUIST B. Absorbing boundary conditions for acoustic and elastic wave equations [J]. Bulletin of Seismological Society of America, 1977, 67(6): 1529??1540.
[18]  [18]张荣欣, 秦国良. 用切比雪夫谱元方法求解均匀流场中的声传播问题 [J]. 西安交通大学学报, 2009, 43(7): 120??124.
[19]  ZHANG Rongxin, QIN Guoliang. Chebychev spectral elements method for acoustic propagation problem in a uniform mean flow [J]. Journal of Xi’an Jiaotong University, 2009, 43(7): 120??124.
[20]  [19]LEE D J, KOO S O. Numerical study of sound generation due to a spinning vortex pair [J]. AIAA Journal, 1995, 33(1): 20??26.
[21]  [1]李晓东, 江?F, 高军辉, 等. 计算气动声学进展与展望 [J]. 中国科学: 物理学?力学?天文学, 2014(3): 234??248.
[22]  [3]GIVOLI D. High??order local non??reflecting boundary conditions: a review [J]. Wave Motion, 2004, 39(4): 319??326.
[23]  XU Kangle, CHEN Yingchun, TAO Jun, et al. A splitting simulation method for aeroacoustic at low Mach conditions [J]. Journal of Fudan University(Natural Science), 2014, 53(5): 636??644.
[24]  [4]DAHL M D.  Numerical solutions to the fourth and second computational aeroacoustics (CAA) workshop benchmark problems [C]∥The 4th Computational Aeroacoustics (CAA) Workshop on Benchmark Problems. Washington, DC, USA: NASA Glenn Research Center, 2004: 187??197.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133