全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

采用随机矩阵的多扩展目标滤波器
A Multi??Target Filter Based on Random Matrix

DOI: 10.7652/xjtuxb201507017

Keywords: 滤波器,扩展目标,随机矩阵,跟踪算法
filter
,extended target,random matrix,tracking algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对杂波环境下多扩展目标的运动状态和形状信息的联合估计跟踪的问题,提出了一种基于随机矩阵的扩展目标跟踪算法。该算法采用具有噪声基于密度的空间聚类(DBSCAN)划分与预测划分相结合的联合划分算法对量测集进行划分,然后采用联合概率数据关联(JPDA)的软关联思想建立量测簇与扩展目标之间的对应关系,最后采用随机矩阵法对扩展目标进行估计获得运动状态和形状信息,特点是:将量测集划分为互不相交的几个簇,以使每个簇中的量测源于同一目标或杂波;建立量测簇与扩展目标之间的关联关系及状态更新。联合划分算法与DBSCAN划分的比较仿真实验表明,在有距离相近目标时采用联合划分算法比采用DBSCAN划分的滤波器的跟踪效果好得多。所提多扩展目标滤波器与ET??GMPDH滤波器的仿真实验表明,所提算法有较高的跟踪精度、较大的检测概率及较小的虚警概率。
A multiple extended target filter based on random matrix is proposed to track the kinematic states and shape information of multiple targets in the presence of the clutter measurements. The proposed filter employs a joint partitioning algorithm, which combines the DBSCAN(density based spatial clustering of applications with noise) and the prediction partitioning algorithm, to partition the measurement set. Then, the JPDA(joint probabilistic data association), which is a soft association algorithm, is applied to description of the association between measurement clusters and extended targets. Finally, the method of random matrix is employed to estimate the kinematic states and shape information of extended targets. Simulation results which compare the joint partitioning algorithm with DBSCAN partitioning show that the filter by using joint partitioning algorithm could achieve much better tracking performance than that by using DBSCAN partitioning when there are spatially close extended targets. Moreover, simulation results in comparison with the ET??GMPHD filter show that the proposed multiple extended target filter has higher tracking accuracy, higher detection probability, and lower false alarm probability

References

[1]  [7]BAUM M, HANEBECK U D. Shape tracking of extended objects and group targets with star??convex RHMs [C]∥Proceedings of the International Conference on Information Fusion. Piscataway, NJ, USA: IEEE, 2011: 338??345.
[2]  [9]ORGUNER U, LUNDQUIST C, GRANSTROM K. Extended target tracking with a cardinalized probability hypothesis density filter [C]∥Proceedings of the 14th International Conference on Information Fusion. Piscataway, NJ, USA: IEEE, 2011: 1??8.
[3]  [8]MAHLER R. PHD filters for nonstandard targets: I extended targets [C]∥Proceedings of the International Conference on Information Fusion. Piscataway, NJ, USA: IEEE, 2009: 915??921.
[4]  [10]GRANSTROM K, LUNDQUIST C, ORGUNER U. Extended target tracking using a Gaussian mixture PHD filter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268??3286.
[5]  [11]GRANSTROM K, ORGUNER U. A PHD filter for tracking multiple extended targets using random matrices [J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5657??5671.
[6]  [12]HAN Yulan, ZHU Hongyan, HAN Chongzhao. A Gaussian??mixture PHD filter based on random hypersurface model for multiple extended targets [C]∥Proceedings of the International Conference on Information Fusion. Piscataway, NJ, USA: IEEE, 2013: 1752??1759.
[7]  [13]ESTER M, KRIEGEL H, SANDER J, et al. A density??based algorithm for discovering clusters in large spatial databases with noise [C]∥Proceedings of the International Conference on Knowledge Discovery and Data Mining. Menlo Park, CA, USA: AAAI, 1996: 226??231.
[8]  [14]韩崇昭, 朱洪艳, 段战胜, 等. 多源信息融合 [M]. 北京: 清华大学出版社, 2010.
[9]  [15]SCHUHMACHER D, VO B T, VO B N. A consistent metric for performance evaluation of multi??object filters [J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447??3457.
[10]  [1]MICHAEL F, DIETRICH F, WOLFGANG K. Tracking of extended objects and group targets using random matrices [J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409??1420.
[11]  [2]GILHOLM K, SALMOND D. Spatial distribution model for tracking extended objects [J]. IEE Proceedings on Radar, Sonar and Navigation, 2005, 152(5): 364??371.
[12]  [3]KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices [J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042??1059.
[13]  [4]FELDMANN M, FRANKEN D, KOCH J W. Tracking of extended objects and group targets using random matrices [J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409??1420.
[14]  [5]BAUM M, HANEBECK U D. Random hypersurface models for extended object tracking [C]∥Proceedings of International Symposium on Signal Processing and Information Technology. Piscataway, NJ, USA: IEEE, 2009: 178??183.
[15]  [6]WIENEKE W, KOCH J W. Probabilistic tracking of multiple extended targets using random matrices [C]∥SPIE Proceedings: Vol 7698Signal and Data Processing of Small Targets. Bellingham, WA, USA: SPIE, 2010: 769812.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133