全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

仿海蟹机器人游泳足水动力学分析与实验研究
Hydrodynamic Analysis and Experimental Research on Swimming Leg of Crablike Robot

DOI: 10.7652/xjtuxb201508013

Keywords: 仿海蟹机器人,游泳足,水动力性能,游动模式
crablike robot
,swimming leg,hydrodynamic performance,swimming mode

Full-Text   Cite this paper   Add to My Lib

Abstract:

以生物梭子蟹为仿生原型,提出一种足桨耦合驱动仿海蟹机器人。该机器人采用三对步行足和一对游泳足的结构形式,基于爬行推进与拍动翼复合推进的方式,兼具形态仿生和功能仿生的特点,可实现水下行走与水中浮游的双重功能。通过对游泳足推进方式进行数值模拟和实验研究,结果表明:升力模式推进在水翼上挥和下拍过程中均产生正推力,推进效率相对较高;随着拍动幅度的增加,平均推力和推进效率都明显降低;推进效率与拍动频率呈抛物线关系;当斯特劳哈尔数Sr在0.4~0.6范围内时,升力模式的推进效率最大,当Sr在0.8~1.0范围内时,阻力模式的推进效率最高,两者所对应的尾涡脱泻均呈反卡门涡街形式;游泳足水翼的厚度对水动力性能也有影响,相对薄的水翼不仅能增加平均推力,还能降低系统的总能耗,因此更适合推进。
A new leg??paddle coupling crablike robot is developed based on the bionic prototype of portunus trituberculatus. The construction with three pairs of walking legs and one pair of swimming legs is adapted for the robot. By the composite propulsion of waking legs and flapping hydrofoil, the robot is endowed with the ability of walking and swimming under water to indicates the characteristics of morphological and functional bionics. Numerical simulations and water tunnel experiments are carried out to obtain the hydrodynamic performance of swimming legs. It is found that both the upstroke and downstroke phases generate propulsive load to lead to much higher propulsive efficiency when the hydrofoil is in the lift??based swimming mode. The average thrust and propulsive efficiency decreases apparently with the increasing flapping amplitude. The relationships between the propulsive efficiency and flapping frequency are like a parabola. The maximum propulsive efficiency of the lift??based swimming mode is achieved at Strouhal number of 0.4-0.6, and the propulsive efficiency reaches the maximum value at Strouhal number of 0.8-1.0 for the drag??based swimming mode. The wake structures of the two modes are characterized by reverse Karman vortex street. Furthermore, the effects of hydrofoil thickness of swimming leg on hydrodynamic performance are investigated, and the results show that the average thrust of much thinner hydrofoil is higher as well as less energy consumption, indicating that thinner hydrofoil is favorable for propulsion performance

References

[1]  [1]王兆立, 苏玉民, 李彦丽, 等. 非定常流场中机械胸鳍的水动力性能分析 [J]. 哈尔滨工程大学学报, 2009, 30(5): 536??541.
[2]  [17]VIDAL??GADEA A G, BALANGER J H. Muscular anatomy of the legs of the forward walking crab, libinia emarginata (decapoda, brachyura, majoidea) [J]. Arthropod Structure & Development, 2009, 38(3): 179??194.
[3]  NIU Chuanmeng, BI Shusheng, CAI Riyue, et al. Design and hydrodynamic experiments on bionic robotic fish with oscillating pectoral fins [J]. Robot, 2014, 36(5): 535??543.
[4]  WANG Zhaoli, SU Yumin, LI Yanli, et al. Hydrodynamic analysis of a mechanical pectoral fin in unsteady flow [J]. Journal of Harbin Engineering University, 2009, 30(5): 536??541.
[5]  [2]苏玉民, 张曦, 杨亮. 摆动尾鳍水动力性能的试验和数值研究 [J]. 海洋工程, 2012, 30(3): 150??158.
[6]  SU Yumin, ZHANG Xi, YANG Liang. Experimental and numerical study on hydrodynamic performance of a flapping caudal fin [J]. The Ocean Engineering, 2012, 30(3): 150??158.
[7]  [3]LIN Longxin, XIE Haibin, ZHANG Daibing, et al. Supervised neural Q_learning based motion control for bionic underwater robots [J]. Journal of Bionic Engineering, 2010, 7(S1): 177??184.
[8]  [4]MOHSENI K. Pulsatile vortex generators for low??speed maneuvering of small underwater vehicles [J]. Ocean Engineering, 2006, 33(16): 2209??2223.
[9]  [6]VAIDYANATHAN R, CHIEL H J, QUINN R D. A hydrostatic robot for marine applications [J]. Robotics and Autonomous Systems, 2000, 30(1): 103??113.
[10]  [8]杨思凉, 陈惠莲, 戴爱云. 中国动物志: 无脊椎动物(第四十九卷)甲壳动物亚门、十足目、梭子蟹科 [M]. 北京: 科学出版社, 2012: 213??260.
[11]  [9]SLEINIS S, SLIVEY G E. Locomotion in a forward walking crab [J]. Journal of Comparative Physiology, 1980, 136(4): 301??312.
[12]  [14]LINDSEY C C. Form, function and locomotory habits in fish [M]. New York, USA: Academic Press, 1978: 1??100.
[13]  [20]TRIANTAFYLLOU M S, TRIANTAFYLLOU G S, YUE D K P. Hydrodynamics of fishlike swimming [J]. Annual Review of Fluid Mechanics, 2000, 32(1): 33??53.
[14]  [5]陈甫, 藏希??, 闫继宏, 等. 适合航行的六足仿生机器人Spider的研制 [J]. 吉林大学学报: 工学版, 2011, 41(3): 765??770.
[15]  CHEN Fu, ZANG Xizhe, YAN Jihong, et al. Development of navigable hexapod biomimetic robot Spider [J]. Journal of Jilin University: Engineering and Technology Edition, 2011, 41(3): 765??770.
[16]  [7]吕坤, 谢永慧, 张荻. 非正弦振型对沉浮翼型推力产生的影响 [J]. 西安交通大学学报, 2013, 47(9): 55??59.
[17]  L?a Kun, XIE Yonghui, ZHANG Di. Numerical study of nonsinusoidal motion effect on plunging airfoil propulsion [J]. Journal of Xi’an Jiaotong University, 2013, 47(9): 55??59.
[18]  [21]TAYLOR G K, NUDDS R L, THOMAS A L R. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency [J]. Nature, 2003, 425(6959): 707??711.
[19]  [22]HU Wenrong. Hydrodynamic study on a pectoral fin rowing model of a fish [J]. Journal of Hydrodynamics: Ser B, 2009, 21(4): 463??472.
[20]  [10]VIDAL??GADEA A G, RINEHART M D, BELANGER J H. Skeletal adaptations for forwards and sideways walking in three species of decapod crustaceans [J]. Arthropod Structure & Development, 2008, 37(2): 95??108.
[21]  [11]BLAKE R W. The mechanics of labriform locomotion: ILabriform locomotion in the angelfish (pterophyllum eimekei): an analysis of the power stroke [J]. The Journal of Experimental Biology, 1979, 82(1): 255??271.
[22]  [12]SUZUKI H, KATO N. A numerical study on unsteady flow around a mechanical pectoral fin [J]. International Journal of Offshore and Polar Engineering, 2005, 15(3): 161??167.
[23]  [13]SUZUKI H, KATO N, SUZUMORI K. Load characteristics of mechanical pectoral fin [J]. Experiments in Fluids, 2008, 44(5): 759??771.
[24]  [15]WALKER J A, WESTNEAT M W. Kinematics, dynamics, and energetics of rowing and flapping propulsion in fishes [J]. Integrative & Comparative Biology, 2002, 42(5): 1032??1043.
[25]  [16]VIDAL??GADEA A G, BELANGER J H. The evolutionary transition to sideways??walking gaits in brachyurans was accompanied by a reduction in the number of motor neurons innervating proximal leg musculature [J]. Arthropod Structure & Development, 2013, 42(6): 443??454.
[26]  [18]WANG Huaming, ZOU Zaojian, TIAN Ximin. Computation of the viscous hydrodynamic forces on a KVLCC2 model moving obliquely in shallow water [J]. Journal of Shanghai Jiaotong University: Science, 2009, 14(2): 241??244.
[27]  [19]牛传猛, 毕树生, 蔡日月, 等. 胸鳍摆动推进仿生鱼的设计及水动力实验 [J]. 机器人, 2014, 36(5): 535??543.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133