全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

用于机械系统固有频率及阻尼比计算的改进频域方法
A New Frequency??Domain Algorithm to Calculate Natural Frequency and Damping Ratio of Mechanical Systems

DOI: 10.7652/xjtuxb201508001

Keywords: 衰减信号,频谱校正,固有频率,阻尼比,压电悬臂梁
damped signal
,frequency spectrum correction,natural frequency,damping ratio,piezoelectric cantilever

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统的机械系统固有频率及阻尼比计算方法中,时域方法易造成主观误差,频域方法存在一定精度限制的问题,提出了一种利用指数衰减正弦信号频谱校正算法计算系统阻尼比和固有频率的新方法。该方法首先利用基于汉宁窗的插值频谱校正方法获得频率偏移量和衰减因子,再结合有阻尼自由振动响应与指数衰减正弦信号的相似性关系求取固有频率,进而获得系统阻尼比和有阻尼固有频率,最终计算出无阻尼固有频率。分别使用传统时域方法和本文提出的频域方法对压电悬臂梁的固有频率及阻尼比进行计算,结果表明新方法拥有更高的计算精度和更好的信噪比适应性。与传统的频率拟合方法相比,本文所提方法也更简单,计算效率更高。
A new algorithm to calculate the system damping ratio and natural frequency using frequency spectrum correction of exponentially decaying sinusoidal signals is proposed to solve the problem that time domain methods are easy to cause subjective errors and there exists the accuracy limit problem in frequency domain methods in traditional methods to calculate natural frequencies and damping ratios of mechanical systems. The interpolation spectrum correcting method based on Hanning??window is used to obtain frequency deviations and damped factors. Then the natural frequency is calculated by combining similarity relations between damping free vibration responses and exponentially decaying sinusoidal signals, and the system damping ratio and damped natural frequency are obtained. The undamped natural frequency is finally calculated. Both a traditional time domain method and the proposed frequency domain method are respectively used to calculate the natural frequency and damping ratio of a piezoelectric cantilever beam. The results show that the proposed algorithm has a higher calculation accuracy and better adaption of signal to noise ratio. Comparisons with the traditional frequency fitting method show that the new algorithm is simpler and its computational efficiency is higher

References

[1]  [1]CHOPRA A K. Dynamic of structures [M]. 2nd ed. Englewood Cliffs, New Jersey, USA: Prentice Hall, 2000: 12??13. [2]IBRAHIM S R, MIKULCIK E C. Method for the direct identification of vibration parameters from the free response [J]. Shocked Vibration Bulletin, 1977, 47: 183??198.
[2]  [3]IBRAHIM S R. An approach for reducing computational requirements in modal identification [J]. AIAA Journal, 1986, 24(10): 1725??1727.
[3]  [8]倪振华. 振动力学 [M]. 西安: 西安交通大学出版社, 1989: 61??69.
[4]  LIU Xiangjian, CHEN Renwen. Current situation and developing trend of piezoelectric vibration energy harvesters [J]. Journal of Vibration and Shock, 2012, 31(16): 169??176.
[5]  [12]段志平, 张亚. 结构阻尼识别的方法及比较 [J]. 福州大学学报: 自然科学版, 2005, 33(S1): 208??212.
[6]  DUAN Zhiping, ZHANG Ya. Structural damping identification methodology and comparison [J]. Journal of Fuzhou University: Natural Science. 2005, 33(S1): 208??212.
[7]  [13]李中付, 华宏星, 宋汉文, 等. 用时域峰值法计算频率和阻尼 [J]. 振动与冲击, 2001, 20(3): 7??8.
[8]  LI Zhongfu, HUA Hongxing, SONG Hanwen, et al. Frequency and damping calculation based on the peak time domain method [J]. Journal of Vibration and Shock, 2001, 20(3): 7??8.
[9]  [4]IBRAHIM S R. Random decrement technique for modal identification of structures [J]. Journal of Spacecraft and Rockets, 1997, 14(11): 696??700.
[10]  [5]黄文虎, 夏松波, 刘岩. 设备故障诊断原理、技术及应用 [M]. 北京: 科学出版社, 1997: 53??62.
[11]  [6]周传荣, 赵淳生. 机械振动参数识别及其应用 [M]. 北京: 科学出版社, 1989: 173??176.
[12]  [7]刁瑞朋, 孟庆丰. 一种衰减信号加窗频域插值算法 [J]. 西安交通大学学报, 2013, 47(7): 85??90.
[13]  DIAO Ruipeng, MENG Qingfeng. Interpolation algorithm for discrete Fourier transforms of weighted damped sinusoidal signals [J]. Journal of Xi’an Jiaotong University, 2013, 47(7): 85??90.
[14]  [9]刘祥建, 陈仁文. 压电振动能量收集装置研究现状及发展趋势 [J]. 振动与冲击, 2012, 31(16): 169??176.
[15]  [10]王宏金. 基于压电材料的振动能量收集技术及其应用研究 [D]. 西安: 西安交通大学机械工程学院, 2013.
[16]  [11]祁泉泉. 基于振动信号的结构参数识别系统方法研究 [D]. 北京: 清华大学土木工程系, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133