全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于虚功原理的流固耦合面力和位移传递方法
Load and Displacement Transfer Method Based on Virtual Work Principle for Fluid Structure Interaction

DOI: 10.7652/xjtuxb201803022

Keywords: 流固耦合,力和位移传递,能量守恒,插值误差
fluid??structure interaction
,load and displacement transfer,energy conservation,interpolation error

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决已有力和位移传递方法的额外插值误差问题,提出了一种能量守恒的流固耦合面力和位移传递方法。首先将结构网格、流场网格粘贴为一个整体,然后直接采用流固耦合面处流场网格节点的气动力向量作为这一整体系统的激励。提出的方法没有在结构和流场网格之间插值,所以不会引入额外的插值误差,理论分析表明,该方法能够自动满足能量守恒。采用提出的方法对弹性梁、Agard Wing 445??6颤振问题进行计算,得到的弹性梁颤振周期与文献结果偏差约为0.5%,机翼颤振流速与实验值的偏差约为1.3%,而已有的传递方法对弹性梁的计算结果与文献的偏差要比该方法高出约0.8%,对机翼的计算结果与实验值的偏差要比该方法高出约1.9%。
To avoid the additional interpolation error of existing load and displacement transfer methods, a new load and displacement transfer method based on energy conservation is developed in this paper. The structure mesh and the flow mesh are jointed to be an integral system. Then the nodal aerodynamic force vector of the flow mesh located on the fluid structure interface is taken as the excitation force for the system. There is no numerical interpolation between the structure mesh and the flow mesh during the load and displacement transfer by the present method, so the additional interpolation error does not exist. Theoretical analysis shows that the present method is conservative in energy. Computations are performed for an elastic beam and the Agard Wing 445??6, and the calculated flutter period of the beam using the present method deviates from the reported data by 0.5% and the calculated flutter flow speed by this method for the wing 445??6 differs from the experimental data by 1.3%. While the computational deviation of the existing transfer method is 0.8% higher than that of the present method for the beam and 1.9% higher for the wing

References

[1]  WANG Junyi, ZHAO Qijun, XIAO Yu. Calculations on aeroelastic loads of rotor with advanced blade??tip based on CFD/CSD coupling method [J]. Acta Aeronautica and Astronautica Sinica, 2014, 35(9): 2426??2437.
[2]  [8]KIM Y H, KIM J E. New hybrid interpolation method for motion transfer in fluid??structure interactions [J]. Journal of Aircraft, 2006, 43(2): 567??569.
[3]  [13]TUREK S, HRON J. Proposal for numerical benchmarking of fluid??structure interaction between an elastic object and laminar incompressible flow [M]. Berlin, Germany: Springer, 2006: 371??385.
[4]  [14]YATES J E C. AGARD standard aeroelastic configurations for dynamic response: IWing 445??6 [R]. Washington, DC, USA: NASA, 1987: 1??74.
[5]  [4]刘占生, 马瑞贤, 杨帆, 等. 基于流固耦合作用的柔性体流噪声降噪机理研究 [J]. 机械工程学报, 2016, 52(10): 176??184.
[6]  [6]DE BOER A, VAN ZUIJLENA H, BIJL H. Review of coupling methods for non??matching meshes [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(8): 1515??1525.
[7]  YANG Min, WANG Fujun, QI Lanying, et al. Fluid??structure coupling interface model and its application in dynamic analysis of hydraulic machinery [J]. Journal of Hydraulic Engineering, 2011, 42(7): 819??825.
[8]  [1]BILLAH K Y, SCANLAN R H. Resonance, Tacoma narrows bridge failure, and undergraduate physics textbooks [J]. American Journal of Physics, 1991, 59(2): 118??124.
[9]  [2]王俊毅, 招启军, 肖宇. 基于CFD/CSD耦合方法的新型桨尖旋翼气动弹性载荷计算 [J]. 航空学报, 2014, 35(9): 2426??2437.
[10]  [3]仲继泽, 徐自力. 流固单向耦合的能量法及机翼颤振预测 [J]. 西安交通大学学报, 2017, 51(1): 109??114.
[11]  ZHONG Jize, XU Zili. Wing flutter prediction using an energy method based on one??way fluid structure coupling [J]. Journal of Xi’an Jiaotong University, 2017, 51(1): 109??114.
[12]  [11]仲继泽, 徐自力, 陶磊. 基于虚拟弹性体的快速动网格方法 [J]. 西安交通大学学报, 2016, 50(10): 132??138.
[13]  ZHONG Jize, XU Zili, TAO Lei. An efficient dynamic mesh method based on pseudo elastic solid [J]. Journal of Xi’an Jiaotong University, 2016, 50(10): 132??138.
[14]  [12]仲继泽, 徐自力. 采用快速动网格技术的时空同步流固耦合算法 [J]. 振动工程学报, 2017, 30(1): 41??48.
[15]  ZHONG Jize, XU Zili. Time??space synchronizing fluid structure coupling method using a fast dynamic mesh technique [J]. Journal of Vibration Engineering, 2017, 30(1): 41??48.
[16]  LIU Zhansheng, MA Ruixian, YANG Fan, et al. Study on noise reduction mechanism of flow induced noise for flexible body based on fluid??structure interaction [J]. Journal of Mechanical Engineering, 2016, 52(10): 176??184.
[17]  [5]周岱, 李磊, 邓麟勇, 等. 流固耦合问题的网格更新与信息传递新方法 [J]. 工程力学, 2010, 27(5): 83??90.
[18]  ZHOU Dai, LI Lei, DENG Linyong, et al. Novel methods for mesh update and data transfer technique of fluid??structure interaction [J]. Engineering Mechanics, 2010, 27(5): 83??90.
[19]  [7]安伟刚, 梁生云, 陈殿宇. 一种局部动态数据交换方法在流固耦合分析中的应用 [J]. 航空学报, 2013, 34(3): 541??546.
[20]  AN Weigang, LIANG Shengyun, CHEN Dianyu. Local dynamic data exchange in fluid structure interaction analysis [J]. Acta Aeronautica and Astronautica Sinica, 2013, 34(3): 541??546.
[21]  [9]杨敏, 王福军, 戚兰英, 等. 流固耦合界面模型及其在水力机械动力学分析中的应用 [J]. 水利学报, 2011, 42(7): 819??825.
[22]  [10]TEZDUYAR T E. Stabilized finite element formulations for incompressible flow computations [J]. Advances in Applied Mechanics, 1991, 28: 1??44.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133