全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

粗糙表面的加卸载分形接触解析模型
An Analytical Model of Loading??Unloading Contact Between Rough Surfaces Based on Fractal Theory

DOI: 10.7652/xjtuxb201803014

Keywords: 接触,粗糙表面,微凸体,分形,弹塑性变形
contact
,rough surface,asperity,fractal,elastoplastic deformation

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于分形理论,建立了粗糙表面加卸载接触力学模型,推导出了单个微凸体弹性、弹塑性以及塑性变形的存在条件,获得了对应条件下微凸体加、卸载的力学表达式。根据加载终点与卸载起点真实接触面积和总接触载荷不变规则,对传统的微凸体面积密度分布函数进行变换,分别给出了加、卸载接触过程中不同频率指数微凸体的面积密度分布函数,最终得到了加、卸载接触过程中粗糙表面真实接触面积与总接触载荷之间的关系。结果表明:在一个加、卸载接触循环内,粗糙表面加、卸载接触的力学性质取决于微凸体频率指数的范围;当微凸体的最小频率指数nmin与临界弹性频率指数nec的关系满足nmin+5≤nec时,粗糙表面在整个加卸载接触过程中呈现弹性性质;当nmin>nec、接触下压量大于微凸体自身临界下压量发生弹塑性变形时,在相同的总接触载荷条件下,卸载过程中的量纲一真实接触面积大于加载过程中的量纲一真实接触面积,且两者的差值与下压量成正比,最大量纲一差值范围为0~0.085 8。
Based on fractal theory, a loading??unloading contact mechanics model of rough surfaces is established. The existence conditions of elastic deformation, elastoplastic deformation and fully plastic deformation of single asperity are deduced. And the mechanical expressions of single asperity under loading and unloading are obtained for different deformation conditions. The traditional area density distribution function of asperities is modified according to a rule that the real contact area and total contact load at the end of loading equal the real contact area and total contact load in the inception of unloading. And the area and density distribution function of asperity’s frequency index is deduced under loading and unloading conditions. Eventually, the relationship between total contact load and real contact area is obtained. The results show that the contact mechanical properties of the rough surface depend on the asperity’s frequency index in a loading??unloading cycle. When asperity’s frequency index nmin+5 is less than critical elastic frequency index nec, the rough surface shows an elastic deformation behavior in a loading??unloading cycle. When the asperity’s frequency index nmin is greater than the critical elastic frequency index and the deformation is greater than the critical deformation, and the real contact area in unloading process is greater than that in loading process. As the deformation increases, the non??dimensional difference between the real areas of loading and unloading is proportional to the deformation, whose range is from 0 to 0.085 8

References

[1]  [15]KADIN Y, KLIGERMAN Y, ETSION I. Unloading an elastic??plastic contact of rough surfaces [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(12): 2652??2674.
[2]  [16]MAJUMDAR A, BHUSHAN B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces [J]. ASME Journal of Tribology, 1990, 112(2): 205??216.
[3]  [18]MAJUMDAR A, BHUSHAN B. Fractal model of elastic??plastic contact between rough surfaces [J]. ASME Journal of Tribology, 1991, 113(1): 1??11.
[4]  [19]WANG S, KOMVOPOULOS K. A fractal theory of the interfacial temperature distribution in the slow sliding regime: part IElastic contact and heat transfer analysis [J]. ASME Journal of Tribology, 1994, 116(4): 812??822.
[5]  [20]WANG S, KOMVOPOULOS K. A fractal theory of the interfacial temperature distribution in the slow sliding regime: part II Multiple domains, elastoplastic contacts and applications [J]. ASME Journal of Tribology, 1994, 116(4): 824??832.
[6]  [21]MORAG Y, ETSION I. Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces [J]. Wear, 2007, 262(5/6): 624??629.
[7]  [22]MIAO X, HUANG X. A complete contact model of a fractal rough surface [J]. Wear, 2014, 309(1/2): 146??151.
[8]  [23]丁雪兴, 严如奇, 贾永磊. 基于基底长度的粗糙表面分形接触模型的构建与分析 [J]. 摩擦学学报, 2014, 34(4): 341??347.
[9]  HU Zhaowen, LIU Kun, WANG Wei, et al. Review and prospect of contact models of rough surfaces [J]. Cryogenics & Superconductivity, 2011, 39(12): 71??74.
[10]  [2]黄健萌, 高诚辉, 李友遐, 等. 工程粗糙表面接触摩擦热力学研究进展 [J]. 中国工程机械学报, 2007, 5(4): 490??496.
[11]  HUANG Jianmeng, GAO Chenghui, LI Youxia, et al. Advances of frictional contact thermodynamics for fractal rough surfaces [J]. Chinese Journal of Construction Machinery, 2007, 5(4): 490??496.
[12]  [6]JACKSON R L, STREATOR J L. A multi??scale model for contact between rough surfaces [J]. Wear, 2006, 261(11): 1337??1347.
[13]  [24]YUAN Y, CHENG Y, LIU K, et al. A revised Majumdar and Bushan model of elastoplastic contact between rough surfaces [J]. Applied Surface Science, 2017, 425: 1138??1157.
[14]  [25]成雨, 原园, 甘立, 等. 尺度相关的分形粗糙表面弹塑性接触力学模型 [J]. 西北工业大学学报, 2016, 34(3): 485??492.
[15]  [26]YAN W, KOMVOPOULOS K. Contact analysis of elastic??plastic fractal surfaces [J]. Journal of Applied Physics, 1998, 84(7): 3617??3624.
[16]  [3]李辉光, 刘恒, 虞烈. 粗糙机械结合面的接触刚度研究 [J]. 西安交通大学学报, 2011, 45(6): 69??74.
[17]  LI Huiguang, LIU Heng, YU Lie. Contact stiffness of rough mechanical joint surface [J]. Journal of Xi’an Jiaotong University, 2011, 45(6): 69??74.
[18]  WANG Qingpeng, ZHANG Li, DU Baocheng, et al. Re??definition of asperity??peak for deterministic contact model on rough surfaces [J]. Journal of Xi’an Jiaotong University, 2016, 50(11): 115??120.
[19]  [5]PEI L, HYUN S, MOLINARI J F, et al. Finite element modeling of elasto??plastic contact between rough surfaces [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(11): 2385??2409.
[20]  [11]CHANG W, ETSION I, BOGY D B. An elastic??plastic model for the contact of rough surfaces [J]. ASME Journal of Tribology, 1987, 109(2): 257??263.
[21]  [12]LIN Y Y, HUI C Y. Mechanics of contact and adhesion between viscoelastic spheres: an analysis of hysteresis during loading and unloading [J]. Journal of Polymer Science: Part BPolymer Physics, 2002, 40(9): 772??793.
[22]  [13]KOGUT L, ETSION I. Elastic??plastic contact analysis of a sphere and a rigid flat [J]. Journal of Applied Mechanics, 2002, 69(5): 657??662.
[23]  [14]ETSION I, KLIGERMAN Y, KADIN Y. Unloading of an elastic??plastic loaded spherical contact [J]. International Journal of Solids and Structures, 2005, 42(13): 3716??3729.
[24]  DING Xuexing, YAN Ruqi, JIA Yonglei. Construction and analysis of fractal contact mechanics model for rough surface based on base length [J]. Tribology, 2014, 34(4): 341??347.
[25]  [1]胡兆稳, 刘?j, 王伟, 等. 粗糙表面接触模型的研究现状和展望 [J]. 低温与超导, 2011, 39(12): 71??74.
[26]  [4]王庆朋, 张力, 杜宝程, 等. 粗糙表面确定性接触模型中峰的再定义 [J]. 西安交通大学学报, 2016, 50(11): 115??120.
[27]  [7]GREENWOOD J, WILLIAMSON J. Contact of nominally flat surfaces [J]. Mathematical, Physical and Engineering Sciences, 1966, 295(1442): 299??319.
[28]  [8]GREENWOOD J A, TRIPP J H. The elastic contact of rough spheres [J]. Journal of Applied Mechanics, 1967, 34(1): 153??159.
[29]  [9]GREENWOOD J, TRIPP J. The contact of two nominally flat rough surfaces [J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1): 625??633.
[30]  [10]PULLEN J, WILLIAMSON J B P. On the plastic contact of rough surfaces [J]. Mathematical, Physical and Engineering Sciences, 1972, 327(1569): 159??173.
[31]  [17]MAJUMDAR A, TIEN C. Fractal characterization and simulation of rough surfaces [J]. Wear, 1990, 136(2): 313??327.
[32]  CHENG Yu, YUAN Yuan, GAN Li, et al. The elastic??plastic contact mechanics model related scale of rough surface [J]. Journal of Northwestern Polytechnical University, 2016, 34(3): 485??492.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133