全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

考虑侧向稳定性的分布式电驱动汽车制动滑移率控制
Wheel Slip Control in Distributed Electric Drive Vehicles with Lateral Stability Improvement

DOI: 10.7652/xjtuxb201505007

Keywords: 电动汽车,电液复合制动,极值搜索算法,侧向稳定性,滑移率控制
electric vehicle
,electro??hydraulic hybrid braking,extremum??seeking algorithm,lateral stability,wheel slip control

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对分布式电驱动汽车在复杂路面紧急制动时引起车轮突然滑转或抱死而导致的车辆失去转向能力甚至甩尾的问题,提出了一种考虑车辆侧向稳定性的电液复合制动滑移率控制策略。滑移率控制采用了滑模极值搜索算法,基于分层结构,即上层为期望制动力矩计算模块,中层为考虑执行器带宽的动态控制分配模块,下层为电液复合执行器,同时还考虑了位置和速率约束且应用主动前轮转向(AFS)系统补偿侧向稳定性。基于MATLAB/Simulink建立了7自由度整车模型,在分离路面典型制动工况下对控制算法进行了验证。结果表明:所提控制策略可以有效减小制动距离,保证车辆侧向稳定性;滑移率控制器可以自适应于路面附着系数的变化。
As imminent braking, distributed electric drive vehicles on complex roads often encounter slipping or locking leading to the loss of steering ability or rear sway. A new wheel slip control strategy with lateral stability improvement for electro??hydraulic hybrid braking system was proposed. The wheel slip controller was designed by sliding mode extremum??seeking algorithm with a hierarchical control structure. In the upper layer, the desired braking torque was carried out, and a dynamic control allocator considering different actuators dynamics was employed to determine the optimal split between electric and friction brake torque in the middle layer. In the lower layer, a hybrid actuator system consisting hydraulic brake and the electrical brake was designed based on actuator position and rate constraints. The active front steering (AFS) system was set up to compensate the vehicle lateral stability. The simulation in MATLAB/Simulink environment for split?拨? straight??line braking of a 7??DoFs vehicle model shows that the proposed strategy enables to significantly reduce braking distance with vehicle lateral stability, and the wheel slip controller adapts to variable road adhesion coefficient

References

[1]  [8]DIN?sMEN E, ?aUVEN?s B A, CARMAN T. Extremum seeking control of ABS braking in road vehicles with lateral force improvement [J]. IEEE Transactions on Control Systems Technology, 2012(1): 230??237.
[2]  [3]王治中, 于良耀, 宋健. 基于制动系统的汽车车轮滑移率控制研究现状 [J]. 汽车工程, 2014, 36(1): 81??87.
[3]  WANG Zhizhong, YU Liangyao, SONG Jian. The status quo of research on vehicle wheel slip control based on brake system [J]. Automotive Engineering, 2014, 36(1): 81??87.
[4]  [4]DE CASTRO R, ARAJO R E, TANELLI M, et al. Torque blending and wheel slip control in EVs with in??wheel motors [J]. Vehicle System Dynamics, 2012, 50(S1): 71??94.
[5]  [5]唐家栋. 电动汽车电液复合制动控制方法研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013.
[6]  [6]HARKEGARD O. Dynamic control allocation using constrained quadratic programming [J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 1028??1034.
[7]  [7]ZHANG C, ORD?EO?FNEZ R. Extremum seeking control and applications [M]. Berlin, Germany: Springer, 2012.
[8]  [9]SATZGER C, DE CASTRO R, B?aNTE T. A model predictive control allocation approach to hybrid braking of electric vehicles [C]∥Intelligent Vehicles Symposium Proceedings. Piscataway, NJ, USA: IEEE, 2014: 286??292.
[9]  [10]国家技术监督局. GB/T 13594―2003机动车和挂车防抱制动性能和试验方法[S]. 北京: 中国标准出版社, 2003.
[10]  [1]余卓平, 冯源, 熊璐. 分布式驱动电动汽车动力学控制发展现状综述 [J]. 机械工程学报, 2013, 49(8): 105??114.
[11]  YU Zhuoping, FENG Yuan, XIONG Lu. Review on vehicle dynamics control of distributed drive electric vehicle [J]. Journal of Mechanical Engineering, 2013, 49(8): 105??114.
[12]  [2]刘志强, 过学迅. 纯电动汽车电液复合再生制动控制 [J]. 中南大学学报: 自然科学版, 2011, 42(9): 2687??2691.
[13]  LIU Zhiqiang, GUO Xuexun. Electronic??hydraulic??compound regenerative braking control for electric vehicles [J]. Journal of Central South University: Natural Sciences Edition, 2011, 42(9): 2687??2691.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133