全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

电液伺服系统多模型鲁棒自适应控制
Multiple Model Robust Adaptive Control of Electro??Hydraulic Servo Systems

DOI: 10.7652/xjtuxb201811023

Keywords: 电液伺服系统,多模型自适应,辨识模型,鲁棒性
electro??hydraulic servo system
,multiple??model adaptive,identification model,robustness

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对电液伺服系统中存在不确定非线性和强参数不确定性的问题,提出一种多模型鲁棒自适应控制算法。根据系统参数不确定性范围建立了多个辨识模型,在辨识模型中设计非线性鲁棒项,以抑制干扰、未建模动态等不确定非线性的影响,提高系统的鲁棒性。基于辨识模型设计相应的控制器,采用基于辨识误差的性能指标函数作为切换依据,选取最佳控制器作为当前控制器,解决了传统自适应控制对参数自适应初值敏感的问题。该方法能够克服不确定非线性和强参数不确定性的影响,使系统得到渐进跟踪的性能,提高系统的瞬态响应性能。实验结果表明,该算法能抑制建模不确定性的影响,系统期望跟踪指令幅值为10 mm时,跟踪误差大约为0.038 6 mm,相对跟踪误差约为0.386%,系统跟踪精度得到了提高。
An multiple??model robust adaptive control algorithm is proposed for motion control of electro??hydraulic servo systems subjected to both uncertain nonlinearities and strong parametric uncertainties. According to the range of parametric uncertainties, multiple identification models are designed and nonlinear robust items are added to the models to suppress the influence of uncertain nonlinearities and to improve the robustness of the system. The controllers are designed based on the identification models and then the performance index function designed based on the identification error is considered to select the optimal controller as the current controller. This method solves the problem that the traditional adaptive control is sensitive to the initial value. The proposed control algorithm can overcome the influence of uncertain nonlinearities and strong parametric uncertainties, guarantee an asymptotic output tracking performance, and improve the transient response performance of the system. Experimental results showed that the proposed algorithm can suppress the influence of modeling uncertainties. Its tracking error is 0.038 6 mm when the amplitude of the desired tracking trajectory is 10 mm and the relative tracking error reaches 0.386%, thus the system tracking accuracy is obviously improved

References

[1]  [4]徐张宝, 朱忠领, 马大为, 等. 考虑状态约束的液压系统自适应控制 [J]. 西安交通大学学报, 2017, 51(1): 97??102.
[2]  [10]徐张宝, 马大为, 姚建勇, 等. 采用干扰估计的液压系统自适应鲁棒控制 [J]. 西安交通大学学报, 2016, 50(8): 123??129.
[3]  [15]NARENDRA K S, WANG Y, CHEN W. Stability, robustness, and performance issues in second level adaptation [C]∥American Control Conference. Piscataway, NJ, USA: IEEE, 2014: 2377??2382.
[4]  [16]CHEN W, SUN J, CHEN C, et al. Adaptive control of a class of nonlinear systems using multiple models with smooth controller [J]. International Journal of Robust & Nonlinear Control, 2015, 25(6): 865??877.
[5]  [17]CHEN J, CHEN W, SUN J. Smooth controller design for nonlinear systems using multiple fixed models [J]. IET Control Theory & Applications, 2017, 11(9): 1467??1473.
[6]  [18]YAO J, JIAO Z, MA D, et al. High??accuracy tracking control of hydraulic rotary actuators with modeling uncertainties [J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 633??641.
[7]  [3]YAO J, DENG W, SUN W. Precision motion control for electro??hydraulic servo systems with noise alleviation: a desired compensation adaptive approach [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 859??868.
[8]  XU Zhangbao, ZHU Zhongling, MA Dawei. Adaptive control of hydraulic systems with state constraints [J]. Journal of Xi’an Jiaotong University, 2017, 51(1): 97??102.
[9]  XU Zhangbao, MA Dawei, YAO Jianyong, et al. An adaptive robust control algorithm for hydraulic actuators with disturbance estimation [J]. Journal of Xi’an Jiaotong University, 2016, 50(8): 123??129.
[10]  [11]NARENDRA K S, BALAKRISHNAN J. Adaptive control using multiple models [J]. IEEE Transactions on Automatic Control, 1997, 42(2): 171??187.
[11]  [12]李晓理, 张维存, 王伟. 基于有界扰动分区的多模型自适应控制 [J]. 控制理论与应用, 2006, 23(2): 283??286.
[12]  [13]邵彭真, 方一鸣, 王文宾, 等. 轧机液压伺服系统多模型切换自适应反步控制 [J]. 北京科技大学学报, 2012, 34(11): 1346??1351.
[13]  [1]MERRITT H E. Hydraulic control systems [M]. New York, USA: Wiley, 1967: 100??175.
[14]  [2]DENG W, YAO J, MA D. Robust adaptive precision motion control of hydraulic actuators with valve dead??zone compensation [J]. ISA Transactions, 2017, 70: 269??278.
[15]  [5]YAO J, DENG W, JIAO Z. Adaptive control of hydraulic actuators with LuGre model based friction compensation [J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6469??6477.
[16]  [6]YAO Jianyong, JIAO Zongxia, MA Dawei. Extended state observer??based output feedback nonlinear robust control of hydraulic systems with backstepping [J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6285??6293.
[17]  [7]GUAN C, PAN S. Adaptive sliding mode control of electro??hydraulic system with nonlinear unknown parameters [J]. Control Theory & Applications, 2008, 16(11): 1275??1284.
[18]  [8]REN H P, GONG P F. Adaptive control of hydraulic position servo system using output feedback [J]. Journal of Systems & Control Engineering, 2017, 23(7): 527??540.
[19]  [9]YAO B, BU F, REED Y J, et al. Adaptive robust motion control of single??rod hydraulic actuators: theory and experiments [J]. IEEE/ASME Transactions on Mechatronics, 2002, 5(1): 79??91.
[20]  LI Xiaoli, ZHANG Weicun, WANG Wei. Multiple model adaptive control based on the scope of bounded disturbance [J]. Control Theory & Applications, 2006, 23(2): 283??286.
[21]  SHAO Pengzhen, FANG Yiming, WANG Wenbin, et al. Adaptive backstepping control of multi??model switching for the hydraulic servo position system of a rolling mill [J]. Journal of University of Science and Technology Beijing, 2012, 34(11): 1346??1351.
[22]  [14]HAN Z, NARENDRA K S. New concepts in adaptive control using multiple models [J]. IEEE Transactions on Automatic Control, 2012, 57(1): 78??89.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133