全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

利用第一性原理计算方法对NbMoTaWVx 高熵合金的研究
Studies on NbMoTaWVx High??Entropy Alloys Based on Ab Initio Theory Calculation Method

DOI: 10.7652/xjtuxb201811013

Keywords: NbMoTaWVx,高熵合金,结构,性质
NbMoTaWVx
,high entropy alloys,structure,property

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了分析NbMoTaWVx高熵合金中V组元对材料特性的影响,利用第一性原理计算方法对其进行了研究,该方法是一种基于密度泛函理论框架下的精确糕模势轨道结合相干势近似模型的方法。首先,对NbMoTaWVx高熵合金的相与结构性质进行了研究,结果表明:当0≤x≤1??5时,NbMoTaWVx高熵合金在平衡态中的最稳定构型为体心立方结构;V组元物质的量比的增加会减小NbMoTaWVx高熵合金的密度、晶格尺寸和体心立方相的稳定性。其次,计算了NbMoTaWVx高熵合金的弹性力学性质,结果表明:随着V组元物质的量比的增加,合金的内在塑性会提高,理论强度会降低,弹性各向异性几乎不变。
To analyze the effect of V element in NbMoTaWVx high??entropy alloys (HEAs), an ab initio theory calculation method is utilized. Exact muffin??tin orbitals which bases on density functional theory and the model with the coherent potential approximation of the close??packed ideal crystal structure are combined together to form the method. Firstly, the phase and the structure of NbMoTaWVx HEAs are investigated. Results show that the most thermodynamically stable phases of NbMoTaWVx HEAs in the equilibrium state is body??centered cubic (bcc) phase when 0≤x≤1??5. And the increasing ratio of amount of substance of V element decreases mass density, lattice size and bcc phase stability of NbMoTaWVx HEAs. Then elastic properties of these HEAs are also calculated, and results show that the theoretical plasticity of alloys becomes better and the theoretical strength decreases with increasing molar fraction of V element, but it has no effect on the anisotropy of NbMoTaWVx HEAs

References

[1]  [16]熊青云, 申江, 田付阳. 理论研究VTiTaNbAlx高熵合金的结构与弹性力学性质 [J]. 原子与分子物理学报, 2016, 33(5): 901??906.
[2]  XIONG Qingyun, SHEN Jiang, TIAN Fuyang. Theoretical study of structures and elastic mechanics of VTiTaNbAlx high??entropy alloys [J]. Journal of Atomic and Molecular Physics, 2016, 33(5): 901??906.
[3]  [17]VITOS L. Computational quantum mechanics for materials engineers [M]. London, UK: Springer London, 2007: 3??96.
[4]  [29]GU X J, MCDERMOTT A G, POON S J, et al. Critical Poisson’s ratio for plasticity in Fe??Mo??C??B??Ln bulk amorphous steel [J]. Applied Physics Letters, 2006, 88(23): 211905.
[5]  [30]TIAN F, VARGA L K, CHEN N, et al. Ab initio design of elastically isotropic TiZrNbMoVx high??entropy alloys [J]. Journal of Alloys and Compounds, 2014, 599: 19??25.
[6]  ZENG Zhongjian, XU Yali. The application and development of rockets test [J]. Aerospace, 2001, 2: 29.
[7]  [9]隋艳伟, 陈霄, 戚继球, 等. 多主元高熵合金的研究现状与应用展望 [J]. 功能材料, 2016, 47(5): 50??54.
[8]  SUI Yanwei, CHEN Xiao, QI Jiqiu, et al. Research progress of high??entropy alloys with multi??principal elements and its prospective application [J]. Journal of Functional Materials, 2016, 47(5): 50??54.
[9]  [1]MEADOR S P. Consideration of wear rates at high velocities [R]. Wright??Patterson Air Force Base, Ohio, USA: Air Force Institute of Technology, 2010: 1??15.
[10]  [2]曾中坚, 徐雅丽. 火箭撬试验的应用和发展 [J]. 航空与航天, 2001, 2: 29.
[11]  [3]李春玲, 马跃, 郝家苗, 等. 难熔高熵合金的研究进展及应用 [J]. 精密成形工程, 2017, 9(6): 117??124.
[12]  LI Chunling, MA Yue, HAO Jiamiao, et al. Research progress and application of refractory high entropy alloys [J]. Journal of Netshape Forming Engineering, 2017, 9(6): 117??124.
[13]  [4]YEH J W, CHEN S K, LIN S J, et al. Nanostructured high??entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299??303.
[14]  [5]HUANG P K, YEH J W, SHUN T T, et al. Multi??principal??element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Advanced Engineering Materials, 2004, 6(1/2): 74??78.
[15]  [6]HSU C Y, YEH J W, CHEN S K, et al. Wear resistance and high??temperature compression strength of FCC CuCoNiCrAl0??5Fe alloy with boron addition [J]. Metallurgical and Materials Transactions: A, 2004, 35(5): 1465??1469.
[16]  [7]YEH J W, LIN S J, CHIN T S, et al. Formation of simple crystal structures in Cu??Co??Ni??Cr??Al??Fe??Ti??V alloys with multiprincipal metallic elements [J]. Metallurgical and Materials Transactions: A, 2004, 35(8): 2533??2536.
[17]  [8]MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122: 448??511.
[18]  [18]VITOS L, ABRIKOSOV I A, JOHANSSON B. Anisotropic lattice distortions in random alloys from first??principles theory [J]. Physical Review Letters, 2001, 87(15): 156401.
[19]  [19]PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865??3868.
[20]  [20]ANDERSON O L. A simplified method for calculating the Debye temperature from elastic constants [J]. Journal of Physics & Chemistry of Solids, 1963, 24(7): 909??917.
[21]  [21]YANG X, ZHANG Y. Prediction of high??entropy stabilized solid??solution in multi??component alloys [J]. Materials Chemistry and Physics, 2012, 132(2/3): 233??238.
[22]  [22]TIAN F Y, VARGA L K, CHEN N, et al. Empirical design of single phase high??entropy alloys with high hardness [J]. Intermetallics, 2015, 58: 1??6.
[23]  [23]GRIMVALL G. Thermophysical properties of materials [M]. Amsterdam, Holland: Elsevier, 1999: 46??48.
[24]  [24]S?ZDERLIND P, ERIKSSON O, WILLS J M, et al. Theory of elastic constants of cubic transition metals and alloys [J]. Physical Review: B, 1993, 48(9): 5844??5851.
[25]  [25]NGUYEN??MANH D, MROVEC M, FITZGERALD S P. Dislocation driven problems in atomistic modelling of materials [J]. Materials Transactions, 2008, 49(11): 2497??2506.
[26]  [26]TAKEUCHI A, AMIYA K, WADA T, et al. High??entropy alloys with a hexagonal close??packed structure designed by equi??atomic alloy strategy and binary phase diagrams [J]. The Journal of the Minerals, 2014, 66(10): 1984??1992.
[27]  [11]SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high??entropy alloys [J]. Intermetallics, 2010, 18(9): 1758??1765.
[28]  [12]SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19(5): 698??706.
[29]  [13]SENKOV O N, SCOTT J M, SENKOVA S V, et al. Microstructure and room temperature properties of a high??entropy TaNbHfZrTi alloy [J]. Journal of Alloys and Compounds, 2011, 509(20): 6043??6048.
[30]  [14]TIAN F Y, DELCZEG L, CHEN N, et al. Structural stability of NiCoFeCrAlx high??entropy alloy from ab initio theory [J]. Physical Review: B, 2013, 88(8): 1336??1340.
[31]  [15]MA D, GRABOWSKI B, K?ZRMANN F, et al. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one [J]. Acta Materialia, 2015, 100: 90??97.
[32]  [27]YOUSSEF K M, ZADDACH A J, NIU C, et al. A novel low??density, high??hardness, high??entropy alloy with close??packed single??phase nanocrystalline structures [J]. Materials Research Letters, 2015, 3(2): 95??99.
[33]  [10]张勇, 周云军, 陈国良. 快速发展中的高熵溶体合金 [J]. 物理, 2008, 37(8): 600??605.
[34]  ZHANG Yong, ZHOU Yunjun, CHEN Guoliang. Fast moving prospects of multi??principal component alloys with high mixing entropy [J]. Physics, 2008, 37(8): 600??605.
[35]  [28]PUGH S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. Philosophical Magazine, 2009, 45(367): 823??843.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133