|
- 2018
融合低秩和稀疏表示的图像超分辨率重建算法
|
Abstract:
针对现有图像超分辨率重建算法收敛速度慢、易受噪声影响的问题,结合低秩矩阵恢复与稀疏重建理论,提出了一种新的单幅图像超分辨率重建算法。对于待重建的退化图像,首先进行低秩恢复,得到含有原始图像大部分信息的低秩部分和主要由噪声组成的稀疏部分,然后对低秩部分利用学习的高低分辨率字典对进行稀疏重建。实验结果表明:本文算法对噪声鲁棒,运行速度快,图像视觉效果更佳;相比基于稀疏表示的统计预测模型(SPBSR),本文算法的峰值信噪比指标平均提高了4 dB。
Traditional super??resolution (SR) reconstruction algorithm converges slowly, and is easily vulnerable to noise. We propose a novel single image SR reconstruction algorithm, which combines low rank matrix recovery with the sparse reconstruction theory. For a degraded image, the low rank part and the sparse part are obtained by the low rank matrix recovery theory firstly. The low rank part contains almost all information of the original image, and the sparse part is composed of noise. Then the sparse reconstruction theory is used to get the final reconstructed image on the low rank part with low and high resolution dictionary pair. Experimental results demonstrate that the proposed algorithm is robust to noise, gains clear visual appearance and high efficiency, and achieves a desirable improvement of 4 dB averagely compared with SPBSR
[1] | [4]FREEMAN W T, PASZTOR E C, CARMICHAEL O T. Example based super resolution [J]. IEEE Transactions on Image Processing, 2012, 21(8): 3467??3475. |
[2] | [13]YANG W, TIAN Y, ZHOU F, et al. Consistent coding scheme for single??image super??resolution via independent dictionaries [J]. IEEE Transactions on Multimedia, 2016, 18(3): 313??325. |
[3] | [17]PELEG T, ELAD M. A statistical prediction model based on sparse representations for single image super??resolution [J]. IEEE Transactions on Image Processing, 2014, 23(6): 2569??2582. |
[4] | JI Xiangmin. Remote sensing image super resolution restoration algorithm based on improved Markov random field [J]. Information & Communications, 2017(6): 1??3. |
[5] | [6]CHANG H, YEUNG D Y, XIONG Y. Super??resolution through neighbor embedding [C]∥Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2004: 275??282. |
[6] | [7]YANG J, WRIGHT J, HUANG T S, et al. Image super??resolution via sparse representation [J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861??2873. |
[7] | [8]侯兴松, 张兰. 方向提升小波变换域稀疏滤波的自然图像贝叶斯压缩感知 [J]. 西安交通大学学报, 2014, 48(10): 15??21. |
[8] | HOU Xingsong, ZHANG Lan. A Bayesian compressive sensing algorithm for natural images based on sparse filtering in directional lifting wavelet transform domain [J]. Journal of Xi’an Jiaotong University, 2014, 48(10): 15??21. |
[9] | [9]郝雯洁, 齐春. 一种鲁棒的稀疏信号重构算法 [J]. 西安交通大学学报, 2015, 49(4): 98??103. |
[10] | HAO Wenjie, QI Chun. A robust reconstruction algorithm for sparse signals [J]. Journal of Xi’an Jiaotong University, 2015, 49(4): 98??103. |
[11] | [10]DONG W, FU F, SHI G, et al. Hyperspectral image super??resolution via non??negative structured sparse representation [J]. IEEE Transactions on Image Processing, 2016, 25(5): 2337??2352. |
[12] | [11]HUANG T, DONG W, XIE X, et al. Mixed noise removal via Laplacian scale mixture modeling and nonlocal low??rank approximation [J]. IEEE Transactions on Image Processing, 2017, 26(7): 3171??3186. |
[13] | [12]DONG C, LOY C C, HE K, et al. Image super??resolution using deep convolutional networks [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 38(2): 295??307. |
[14] | [14]LIU G, LIN Z, YU Y. Robust subspace segmentation by low??rank representation [C/OL]∥Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 2010.[2017??08??20].http:∥www?? cis??pku??edu??cn/faculty/vision/zlin/Publications /2010 ??ICML??LRR??pdf. |
[15] | [15]VIDAL R, FAVARO P. Low rank subspace clustering (LRSC) [J]. Pattern Recognition Letters, 2014, 43(1): 47??61. |
[16] | [16]SHEN H, LI P, YUE L, et al. Adaptive norm selection for regularized image restoration and super??resolution [J]. IEEE Transactions on Cybernetics, 2016, 46(6): 1388??1399. |
[17] | [1]钟宝江, 陆志芳. 图像插值技术综述 [J]. 数据采集与处理, 2016, 31(6): 1083??1096. |
[18] | [2]RAMOS V A, PONOMARYOV V, SHKVARKO Y, et al. Image super??resolution via block extraction and sparse representation [J]. IEEE Latin America Transactions, 2017, 15(10): 1977??1982. |
[19] | ZHONG Baojiang, LU Zhifang. An overview of image interpolation techniques [J]. Data Acquisition and Processing, 2016, 31(6): 1083??1096. |
[20] | [3]王小玉. 图像去噪复原方法研究 [M]. 北京: 电子工业出版社, 2017: 101??109. |
[21] | [5]吉向敏. 改进的马尔科夫随机场的遥感图像超分辨率复原算法 [J]. 信息通信, 2017(6): 1??3. |
[22] | [18]PAPYAN V, ELAD M. Multi??scale patch??based image restoration [J]. IEEE Transactions on Image Processing, 2015, 25(1): 249??261. |