全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Cav1??2离子通道马尔科夫随机过程模型 的建立与应用
Modeling and Applications of Markov Stochastic Process of Cav1??2 Ion Channel

DOI: 10.7652/xjtuxb201802022

Keywords: 马尔科夫模型,电压相关失活,Ca2+相关失活,G406R/G432N突变
Markov model
,voltage??dependent inactivation,Ca2+??dependent inactivation,G406R/G432N mutation

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对Cav1??2离子通道在功能细胞的Ca2+代谢循环中起着关键作用,并且在细胞交互环境下受到多种因素的调控从而表现出的复杂门控行为,基于现有的Cav1??2结构信息,提出了改进的连续时间7态马尔科夫随机过程模型。首先抽象出7个通道状态来表征Cav1??2离子通道的有限构象变化,包括电压相关失活(VDI)和Ca2+相关失活(CDI);其次应用相关实验数据求解7个状态间迁移速率函数的参数,即在贝叶斯框架下利用JAGS软件包,实现蒙特卡洛马尔可夫链(MCMC)算法对参数的后验分布进行Gibbs抽样。最后,将通道随机模型分别应用于描述小空间中Ca2+瞬态行为的随机偏微分方程和Cav1??2离子通道G406R/G432N突变引发的电生理变化。计算结果表明:改进的Cav1??2马尔科夫模型不仅在宏观水平上与广泛的电生理实验结果有较好的吻合,而且在心肌细胞微结构以及通道基因的病理研究领域中具有较好的预测性。
An improved seven states Markov stochastic process model based on current channel structure information is proposed to elucidate and forecast Cav1??2complex gating kinetic in the interactive cell environment regulated by multiple factors which plays a key role in the Ca2+ metabolic cycle in functioning cells. Seven states are abstracted to present the limited conformational changes of Cav1??2channel including VDI and CDI. Based on the Bayesian framework, the experiment data are then used to estimate the parameters of rate function between seven states via JAGS, which implements MCMC algorithm Gibbs sampler to sample the posterior distribution. The stochastic model is applied separately to stochastic PDEs profiling the Ca2+ transient in the subspace and the changed electrophysiological behavior induced by the channel mutations G406R/G432N. The computational results show that the improved Cav1??2 Markov framework coincides well with the broad electrophysiological observations at the macroscopic level, and it also has a better predictability in the field of cardiomyocytes microstructure and channel genes pathology

References

[1]  [5]MOROTTI S, GRANDI E, SUMMA A, et al. Theoretical study of L??type Ca2+ current inactivation kinetics during action potential repolarization and early afterdepolarizations [J]. J Physiol, 2012, 590(18): 4465??4481.
[2]  [6]MAHAJAN A, SHIFERAW Y, SATO D, et al. A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates [J]. Biophys J, 2008, 94(2): 392??410.
[3]  [7]BEZANILLA F. The voltage sensor in voltage??dependent ion channels [J]. Physiol Rev, 2000, 80(2): 555??592.
[4]  [8]GAUTHIER L D, GREENSTEIN J L, WINSLOW R L. Toward an integrative computational model of the Guinea pig cardiac myocyte [J]. Front Physiol, 2012, 3: 244.
[5]  [9]CAVALIE A, PELZER D, TRAUTWEIN W. Fast and slow gating behaviour of single calcium channels in cardiac cells: relation to activation and inactivation of calcium??channel current [J]. Pflugers Arch, 1986, 406(3): 241??258.
[6]  [10]CENS T, ROUSSET M, LEYRIS J P, et al. Voltage??and calcium??dependent inactivation in high voltage??gated Ca(2+) channels [J]. Prog Biophys Mol Biol, 2006, 90(1/2/3): 104??117.
[7]  [11]BENITAH J P, ALVAREZ J L, G?MEZ A M. L??type Ca2+ current in ventricular cardiomyocytes [J]. Journal of Molecular and Cellular Cardiology, 2010, 48(1): 26??36.
[8]  [12]FERREIRA G, YI J X, RIOS E, et al. Ion??dependent inactivation of barium current through L??type calcium channels [J]. Journal of General Physiology, 1997, 109(4): 449??461.
[9]  [13]GRANDI E, MOROTTI S, GINSBURG K S, et al. Interplay of voltage and Ca??dependent inactivation of L??type Ca current [J]. Progress in Biophysics and Molecular Biology, 2010, 103(1): 44??50.
[10]  [14]ZHONG J M, HWANG T C, ADAMS H R, et al. Reduced L??type calcium current in ventricular myocytes from endotoxemic guinea pigs [J]. American Journal of Physiology??Heart and Circulatory Physiology, 1997, 273(5): H2312??H2324.
[11]  [15]REUTER H, STEVENS C F, TSIEN R W, et al. Properties of single calcium channels in cardiac cell culture [J]. Nature, 1982, 297(5866): 501??504.
[12]  [16]SUN L, FAN J S, CLARK J W, et al. A model of the L??type Ca2+ channel in rat ventricular myocytes: ion selectivity and inactivation mechanisms [J]. The Journal of Physiology, 2000, 529(1): 139??158.
[13]  [17]LANGER G A, PESKOFF A. Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell [J]. Biophys J, 1996, 70(3): 1169??1182.
[14]  [18]SPLAWSKI I, TIMOTHY K W, SHARPE L M, et al. Ca(V)1??2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism [J]. Cell, 2004, 119(1): 19??31.
[15]  [19]DEPIL K, BEYL S, STARY??WEINZINGER A, et al. Timothy mutation disrupts the link between activation and inactivation in Ca(V)1??2 protein [J]. J Biol Chem, 2011, 286(36): 31557??31564.
[16]  [3]LUO C H, RUDY Y. A dynamic model of the cardiac ventricular action potential: ISimulations of ionic currents and concentration changes [J]. Circulation Research, 1994, 74(6): 1071??1096.
[17]  [1]SOELLER C, CANNELL M B. Examination of the transverse tubular system in living cardiac rat myocytes by 2??photon microscopy and digital image processing techniques [J]. Circulation Research, 1999, 84(3): 266??275.
[18]  [2]NOBLE D. Modeling the heart??from genes to cells to the whole organ [J]. Science, 2002, 295(5560): 1678??1682.
[19]  [4]COLQUHOUN D, HAWKES A G. On the stochastic properties of bursts of single ion channel openings and of clusters of bursts [J]. Philosophical Transactions of the Royal Society: BBiological Sciences, 1982, 300(1098): 1??59.
[20]  [20]SPLAWSKI I, TIMOTHY K W, DECHER N, et al. Severe arrhythmia disorder caused by cardiac L??type calcium channel mutations [J]. Proc Natl Acad Sci USA, 2005, 102(23): 8089??8096.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133