全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

利用异结构同步对铁磁混沌电路的非线性反馈控制
Nonlinear Feedback Control in Ferromagnetic Chaotic Circuit with Different Structure Synchronization

DOI: 10.7652/xjtuxb201504004

Keywords: 铁磁混沌,非线性,混沌控制
ferromagnetic chaos
,nonlinear,chaos control

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了抑制变电站中由电压互感器引起的铁磁混沌振荡问题,提出了一种异结构同步的非线性反馈控制方法设计控制器。该方法构造了一个正定的李雅普诺夫函数,使其随时间的导数定负,并将基于李雅普诺夫函数构造的控制器外加在状态方程中,选择状态变量磁链为输出信号,并使该输出信号追踪正弦参考信号,要求误差信号趋于零值。为使控制信号在实际中易于提取,在控制器中用电流替换磁链进行改进。数值仿真结果表明,加入控制器后,系统输出磁链(标幺值)由5降到近似1,电压(标幺值)由17的非周期过电压降到近似1的正弦稳态值。改进控制器后的系统输出电压也由非周期过电压过渡为周期性正弦电压,且电压幅值大大降低,研究结果证明了该控制方法的有效性。
To suppress the ferromagnetic chaotic oscillation from voltage transformer in substations, a nonlinear feedback control strategy with different structure synchronization is proposed to design the controller. A positive definite Lyapunov function with negative definite derivative over time is constructed, and the tentative controller takes part in the state equation, where the flux serves as the output signal to track sinusoidal reference signal to keep error signal as zero. For the purpose of easy extracting, the current is chosen instead of the flux. The numeric simulation shows that once adding the controller, the system flux decreases from 5 p??u?? to 1 p??u??, and voltage decreases from non??periodic overvoltage of 17 p??u?? to steady sinusoidal value of 1 p??u??, and the previous non??periodic overvoltage output can be transformed into periodic sinusoidal voltage with greatly reduced amplitude

References

[1]  [16]刘崇新, 翟笃庆, 董子晗, 等. 含有单相铁心变压器的铁磁混沌电路的分析及控制 [J]. 物理学报, 2010, 59(6): 3733??3739.
[2]  LIU Chongxin, ZHAI Duqing, DONG Zihan, et al. Control and analysis of a third??order nonautonomous ferroresonance chaotic circuit with a transformer [J]. Acta Phys Sin, 2010, 59(6): 3733??3739.
[3]  [1]MARTI R. Ferroresonance in power systems: fundamental solutions [J]. IEE Proceedings: C, 1991, 138(4): 321??329.
[4]  [8]HUI Meng, ZHANG Yanbin, LIU Chongxin. Analysis of ferroresonance in neutral grounding system with nonlinear coreloss [J]. Chinese Physics: B, 2009, 18(5): 1787??1791.
[5]  [9]庞霞, 刘崇新. 含电磁式电压互感器的铁磁混沌电路的分析研究 [J]. 物理学报, 2013, 62(15): 150504.
[6]  PANG Xia, LIU Chongxin. Analysis of ferromagnetic chaotic circuit with nonlinear potential transformer [J]. Acta Phys Sin, 2013, 62(15): 150504.
[7]  [10]王胜, 赵意合, 蔡建辉, 等. 电压互感器铁磁谐振防范措施 [J]. 农村电气化, 2014(1): 61.
[8]  WANG Sheng, ZHAO Yihe, CAI Jianhui, et al. Precautions of voltage transformer ferroresonance [J]. Rural Electrification, 2014(1): 61.
[9]  HUI Meng, LIU Panzhi, BAI Lin, et al. Overvoltage suppression by impulsive time??lagging synchronization of non??autonomous ferroresonance chaotic circuit [J]. Journal of Xi’an Jiaotong University, 2014, 48(6): 55??59.
[10]  [14]司马文霞, 刘凡, 孙才新, 等. 基于改进的径向基函 数神经网络的铁磁谐振系统混沌控制 [J]. 物理学报, 2006, 55(11): 5714??5720.
[11]  SIMA Wenxia, LIU Fan, SUN Caixin, et al. Chaos control of ferroresonance system based on improved RBF neutral network [J]. Acta Phys Sin, 2006, 55(11): 5714??5720.
[12]  LIU Fan, SUN Caixin, SIMA Wenxia, et al. Theoretical analysis of chaotic oscillation of ferroresonance overvoltage in power systems [J]. Transactions of China Electrotechnical Society, 2006, 21(2): 103??107.
[13]  [11]武文杰, 王忠为. 厂用6 kV系统铁磁谐振分析及措施研究 [J]. 自动化与仪器仪表, 2011(3): 13??14.
[14]  WU Wenjie, WANG Zhongwei. Analysis and measures of ferroresonance in plant 6 kV system [J]. Automation & Instrumentation, 2011(3): 13??14.
[15]  ZHAO Xiaoming, YU Zhihui. Instances and numerical simulation of ferroresonance in 35 kV side of 500 kV main transformer [J]. Zhejiang Electric Power, 2008(3): 23??25, 47.
[16]  [15]刘凡, 司马文霞, 孙才新, 等. 基于常值脉冲法的铁磁谐振过电压混沌抑制 [J]. 电网技术, 2006, 30(3): 57??61.
[17]  [2]EMIN Z, AL ZAHAWI B A T, TONG Y K, et al. Quantification of the chaotic behavior of ferroresonant voltage transformer circuits [J]. IEEE Trans on Circuit and Systems, 2001, 48(6): 757??760.
[18]  [3]KIENY C. Application of the bifurcation theory in studying and understanding the global behavior of a ferroresonant electric power circuit [J]. IEEE Trans on Power Delivery, 1991, 6(2): 866??872.
[19]  [4]HUI Meng, ZHANG Yanbin, LIU Chongxin. Chaotic ferroresonance in a non??autonomous circuit [J]. Chinese Physics: B, 2008, 17(9): 3258??3263.
[20]  [5]刘凡, 孙才新, 司马文霞, 等. 铁磁谐振过电压混沌振荡的理论研究 [J]. 电工技术学报, 2006, 21(2): 103??107.
[21]  [6]司马文霞, 陈莉?B, 杨庆, 等. GTO控制阻尼电阻脉冲投入的铁磁谐振控制 [J]. 高电压技术, 2014, 40(5): 1520??1529.
[22]  SIMA Wenxia, CHEN Lijun, YANG Qing, et al. Ferroresonance control through GTO controlling damping resistance pulsed access [J]. High Voltage Engineering, 2014, 40(5): 1520??1529.
[23]  [7]GHOLIZADEH H, HASSANNIA A, AZARFAR A. Chaos detection and control in a typical power system [J]. Chinese Physics: B, 2013, 22(1): 010503.
[24]  [12]赵晓明, 余志慧. 500 kV主变35 kV侧铁磁谐振实例及其数值仿真分析 [J]. 浙江电力, 2008(3): 23??25, 47.
[25]  [13]惠萌, 刘盼芝, 白?U, 等. 非自治铁磁谐振电路过电压脉冲时滞同步抑制方法研究 [J]. 西安交通大学学报, 2014, 48(6): 55??59.
[26]  LIU Fan, SIMA Wenxia, SUN Caixin, et al. Controlling chaos in ferroresonance overvoltage based on constant pulse method [J]. Power System Technology, 2006, 30(3): 57??61.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133