全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于奇异值分解的个性化评论推荐
Singular Value Decomposition-Based Personalized Review Recommendation

DOI: 10.3969/j.issn.1001-0548.2015.04.022

Keywords: 评论挖掘,评论推荐,奇异值分解,用户建模

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对如何让消费者在海量评论中快速找到自己感兴趣的评论,该文提出了一个基于奇异值分解的个性化评论推荐系统RevRecSys。该方法首先构建了用户-特征矩阵和评论-特征矩阵;然后利用矩阵分解技术把这两个矩阵压缩到隐因子向量空间;最后通过匹配用户的隐因子向量空间和评论的隐因子向量空间实现评论推荐。通过实验,验证了RevRecSys相比现有的方法,可以获得更好的推荐效果。

References

[1]  XU Hai-lin, WU Xiao, LI Xiao-dong, et al. Comparison study of internet recommendation system[J]. Journal of Software, 2009, 20(2): 350-362.
[2]  赵亮, 胡乃静, 张守志. 个性化推荐算法设计[J]. 计算机研究与发展, 2002, 39(8): 986-991.
[3]  LIN C J, KUO T T, LIN S D. A content-based matrix factorization model for recipe recommendation[C]//The 18th Pacific-Asia Conference on Knowledge Discovery and DataMining. Tainan, Taiwan, China: Springer, 2014: 560- 571.
[4]  CHEN K, CHEN T, ZHENG G, et al. Collaborative personalized tweet recommendation[C]//Proceedings of the 35th International ACM SIGIR Conference on Researchand Development in Information Retrieval. [S.l.]: ACM Press, 2012: 661-670.
[5]  BOBADILLA J S, ORTEGA F, HERNANDO A, et al. A collaborative filtering approach to mitigate the new user cold start problem[J]. Knowledge-Based Systems, 2012(26): 225-238.
[6]  KARDAN A A, EBRAHIMI M. A novel approach to hybrid recommendation systems based on association rules mining for content recommendation in asynchronous discussion groups[J]. Information Sciences, 2013(219): 93-110.
[7]  RAMAGE D, MANNING C D, DUMAIS S. Partially labeled topic models for interpretable text mining[C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [S.l.]: ACM Press, 2011.
[8]  KIM S M, PANTEL P, CHKLOVSKI T, et al. Automatically assessing review helpfulness[C]//Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. [S.l.]: Association for Computational Linguistics, 2006: 423-430.
[9]  RICCI F, ROKACH L, SHAPIRA B, et al. Recommender systems handbook [M]. New York: Springer, 2010.
[10]  BLEI D M, NG A Y JORDAN M I. Latent dirichlet allocation[J]. The Journal of Machine Learning Research, 2003(3): 993-1022.
[11]  LU Y, TSAPARAS P, NTOULAS A, et al. Exploiting social context for review quality prediction[C]//Proceedings of the 19th International Conference on World Wide Web. [S.l.]: ACM Press, 2010: 691-700.
[12]  O'MAHONY M P, SMYTH B. Learning to recommend helpful hotel reviews[C]//Proceedings of the 3th ACM Conference on Recommender Systems. [S.l.]: ACM Press, 2009: 305-308.
[13]  ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state- of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[14]  许海玲, 吴潇, 李晓东, 等. 互联网推荐系统比较研究[J]. 软件学报, 2009(02): 350-362.
[15]  ZHAO Liang, HU Nai-jing, ZHANG Shou-zhi. Algorithm design for personalization recommendation systems[J]. Journal of Computer Research and Development, 2012, 39(8): 986-991.
[16]  XIE H R, LI Q, CAI Y. Community-aware resource profiling for personalized search in folksonomy[J]. Journal of Computer Science and Technology, 2012, 27(3): 599-610.
[17]  DI NOIA T, MIRIZZI R, OSTUNI V C, et al. Linked open data to support content-based recommender systems[C]// Proceedings of the 8th International Conference on Semantic Systems. [S.l.]: ACM Press, 2012: 1-8.
[18]  NOEL J, SANNER S, TRAN K N, et al. New objective functions for social collaborative filtering[C]//Proceedings of the 21st International Conference on World Wide Web. [S.l.]: ACM Press, 2012: 859-868.
[19]  CHEN W, NIU Z, ZHAO X, et al. A hybrid recommendation algorithm adapted in e-learning environments[J]. World Wide Web, 2014, 17(2): 271-284.
[20]  KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
[21]  DEERWESTER S, DUMAIS S T, FURNAS G W, et al. Indexing by latent semantic analysis[J]. Journal of the American society for information science, IEEE, 1990, 41(6): 391-407.
[22]  HOFMANN T. Probabilistic latent semantic indexing[C]// Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. [S.l.]: ACM Press, 1999: 50-57.
[23]  RAMAGE D. Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora [C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. [S.l.]: Association for Computational Linguistics, 2009: 248-256.
[24]  XIE H, LI Q, MAO X. Community-aware user profile enrichment in folksonomy[J]. Neural Networks, 2014(58): 111-121.
[25]  XIE H R, LI Q, CAI Y. Community-aware resource profiling for personalized search in folksonomy[J]. Journal of Computer Science and Technology, 2012, 27(3): 599-610.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133