全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

阵元缺损下的波达方向估计算法
A Novel DOA Estimation Algorithm in Conditions of Array Elements Deficiency

DOI: 10.3969/j.issn.1001-0548.2017.04.004

Keywords: 矩阵填充,Hankel矩阵,不定增广拉格朗日乘子法,波达方向估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决在均匀线阵中阵元降采样或其他因素引起的阵元损坏导致角度估计精度下降的问题,该文对缺损的采样数据矩阵进行Hankel矩阵变换,利用Hankel矩阵变换的性质以及矩阵填充理论,将不满足矩阵填充理论的接收数据矩阵变换为适用于矩阵填充理论的数据矩阵,通过不定增广拉格朗日乘子法精确重构出完整的接收数据矩阵,实现了精确的波达方向估计。仿真实验验证了该方法在均匀线阵阵元出现损毁的情况下,仍能实现对角度的精确估计,同时给出了算法随阵元缺损程度变化的性能变化趋势。

References

[1]  YANG D, LIAO G, ZHU S, et al. SAR imaging with undersampled data via matrix completion[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 11(9):1539-1543.[1] SUN S, BAJWA W U, PETROPULU A P. MIMO-MC radar:a MIMO radar approach based on matrix completion[J]. IEEE Trans on Aerospace & Electronic Systems, 2014, 51(1):1-13.
[2]  杨东, 廖桂生, 朱圣棋, 等. 阵列信号降采样低秩矩阵的恢复方法[J]. 西安电子科技大学学报, 2014, 41(5):30-35. YANG Dong, LIAO Gui-sheng, ZHU Sheng-qi, et al. Improved low-rank recovery method for sparsely sampling data in array signal processing[J]. Journal of Xidian University, 2014, 41(5):30-35.
[3]  CANDàS E J, PLAN Y. Matrix completion with noise[J]. Proc of the IEEE, 2010, 98(6):925-936.
[4]  CHEN Y, XU H, CARAMANIS S, et al. Matrix completion with column manipulation:near-optimal sample-robustness-rank tradeoffs[J]. IEEE Trans on Information Theory, 2016, 62(1):503-526.
[5]  EITANTAWY A, SHEHATA, MOHAMED S. Moving object detection from moving platforms using Lagrange multiplier[C]//IEEE International Conference on Image Processing. Québec, Canada:IEEE, 2015:2586-2590.
[6]  葛启超, 张永顺, 丁姗姗. 用于二维角度估计的新型阵列结构及性能分析[J]. 空军工程大学学报(自然科学版), 2016, 17(1):60-65. GE Qi-chao, ZHANG Yong-shun, DING Shan-shan. Novel array structure and performance analysis for 2-D angle estimation[J]. Journal of Air Force Engineering University (Natural Science Edition), 2016, 17(1):60-65.
[7]  梁浩, 崔琛, 代林, 等. 基于ESPRIT算法的L型阵列MIMO雷达降维DOA估计[J]. 电子与信息学报, 2015, 37(8):1828-1935. LIANG Hao, CUI Chen, DAI Lin, et al. Reduceddimensional DOA estimation based on ESPRIT algorithm in MIMO radar with L-shaped array[J]. Journal of Electronics & Information Technology, 2015, 37(8):1828-1935.
[8]  LARSSON E G, STOICA P. High-resolution direction finding:the missing data case[J]. IEEE Trans on Signal Processing, 2001, 49(5):950-958.
[9]  CANDàS E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2008, 9(6):717-772.
[10]  WANG M, WANG W. DOA estimation of array radar via random interval sub-Nyquist-sampling[C]//IEEE International Conference on Signal Processing, Communication and Computing. Kunming:IEEE, 2013:1-4.
[11]  马晓慧. 矩阵填充理论方法分析[D]. 杭州:浙江大学, 2012. MA Xiao-hui. Method analysis of matrix completion theory[D]. Hangzhou:Zhejiang University, 2012.
[12]  CANDàS E J, SING-LONG C A, TRZASKO J D. Unbiased risk estimates for singular value thresholding and spectral estimators[J]. IEEE Trans on Signal Processing, 2013, 61(19):4643-4657.
[13]  CHEN Y, CHI Y. Robust spectral compressed sensing via structured matrix completion[J]. IEEE Trans on Information Theory, 2014, 60(10):6576-6601.
[14]  丁姗姗, 张永顺, 牛超, 等. 一种基于Khatri-Rao子空间的非均匀稀疏阵列[J]. 空军工程大学学报(自然科学版). 2015, 16(5):78-82. DING Shan-shan, ZHANG Yong-shun, NIU Chao, et al. A novel sparse linear array geometry via Khatri-Rao subspace[J]. Journal of Air Force Engineering University (Natural Science Edition). 2015, 16(5):78-82.
[15]  YAN F, JIN M, LIU S, et al. Real-valued music for efficient direction estimation with arbitrary array geometries[J]. IEEE Trans on Signal Processing, 2014, 62(6):1548-1560.
[16]  VIGNESHWARAN S, SUNDARARAJAN N, SARATCHANDRAN P. Direction of arrival estimation under array sensor failures using a minimal resource allocation neural network[J]. IEEE Trans on Antennas and Propagation, 2007, 55(2):334-343.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133