全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

融合超像素分割与码本模型的目标检测算法
Object Detection Algorithm Based on the Combination of the Superpixel Segmentation and Codebook Model

DOI: 10.3969/j.issn.1001-0548.2017.04.016

Keywords: 码本模型,检测效率,嵌入式处理平台,目标检测,超像素分割

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对码本模型在前景目标检测中的效率有待进一步提高的现状,提出了融合超像素分割的码本构建算法。为减小处理对象的规模,设计了按照颜色及空间相似度聚类原始像素点的思路。以超像素作为码本构建单元,有利于抑制局部噪声并降低码本的冗余度。实验结果表明,融合超像素分割的码本模型算法在保持前景目标检测准确性的情况下,能显著减少视频处理过程中的内存消耗以及提高视频帧处理效率,在基于DM6437的嵌入式处理平台上达到了实时处理的性能。

References

[1]  NGUYEN T M, WU Q M J. Fast and robust spatially constrained Gaussian mixture model for image segmentation[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2013, 23(4):621-635.
[2]  ACHANTA R, SHAJI A, SMITH K A, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282.
[3]  GOYETTE N, JODOIN P M, PORIKLI F, et al. Change detection net:a new change detection benchmark dataset[C]//IEEE Computer Society Conference on Computer Vision & Pattern Recognition Workshops.[S.l.]:IEEE, 2012:1-8.
[4]  魏志强, 纪筱鹏, 冯业伟. 基于自适应背景图像更新的运动目标检测方法[J]. 电子学报, 2005, 33(12):2261-2264. WEI Zhi-qiang, JI Xiao-peng, FENG Ye-wei. A moving object detection method based on self-adaptive updating of background[J]. Acta Electronica Sinica, 2005, 33(12):2261-2264.
[5]  WREN C R, AZARBAYEJANI A, DARRELL T, et al. Real-time tracking of the human body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785.
[6]  陈磊, 邹北骥. 基于动态阈值对称差分和背景差法的运动对象检测算法[J]. 计算机应用研究, 2008, 25(2):488-490. CHEN Lei, ZOU Bei-ji. New algorithm for detecting moving object based on adaptive background subtraction and symmetrical differencing[J]. Application Research of Computers, 2008, 25(2):488-490.
[7]  SUHR J K, JUNG H G, LI G, et al. Mixture of Gaussians-based background subtraction for Bayer-pattern image sequences[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2011, 21(3):365-370.
[8]  徐成, 田峥, 李仁发. 一种基于改进码本模型的快速运动检测算法[J]. 计算机研究与发展, 2010, 47(12):2149-2156. XU Cheng, TIAN Zheng, LI Ren-fa. A fast motion detection method based on improved codebook model[J]. Journal of Computer Research and Development, 2010, 47(12):2149-2156.
[9]  HARWOOD I D, DAVIS L W. Real-time surveillance of people and their activities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):809-830.
[10]  屈晶晶, 辛云宏. 连续帧间差分与背景差分相融合的运动目标检测方法[J]. 光子学报, 2014, 43(7):213-220. QU Jing-jing, XIN Yun-hong. Combined continuous frame difference with background difference method for moving object detection[J]. Acta Photonica Sinica, 2014, 43(7):213-220.
[11]  ADIV G. Determining three-dimensional motion and structure from optical flow generated by several moving objects[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1985, PAMI-7(4):384-401.
[12]  王雯, 陈丽, 李晨, 等. YUV空间下基于码本模型的视频运动目标检测方法[J]. 武汉大学学报:工学版, 2015(3):412-416. WANG Wen, CHEN Li, LI Chen, et al. Moving target detection method based on codebook model under YUV space[J]. Engineering Journal of Wuhan University, 2015(3):412-416.
[13]  姜柯, 李艾华, 苏延召. 基于改进码本模型的视频运动目标检测算法[J]. 电子科技大学学报, 2012, 41(6):932-936. JIANG Ke, LI Ai-hua, SU Yan-zhao. Moving targets detecting algorithm in video based on improved codebook model[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(6):932-936.
[14]  姜柯, 李艾华, 苏延召. 双重自适应码本模型在运动目标检测中的应用[J]. 计算机辅助设计与图形学学报, 2013, 25(1):67-73. JIANG Ke, LI Ai-hua, SU Yan-zhao. Moving objects detection with double adaptive codebook model[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(1):67-73.
[15]  郭春生, 王盼. 一种基于码本模型的运动目标检测算法[J]. 中国图象图形学报, 2010, 15(7):1079-1083. GUO Chun-sheng, WANG Pan. An algorithm based on codebook model to moving objects detection[J]. Journal of Image and Graphics, 2010, 15(7):1079-1083.
[16]  李文辉, 李慧春, 王莹, 等. 对码本模型中码字结构的改进[J]. 吉林大学学报:理学版, 2012, 50(3):517-522. LI Wen-hui, LI Hui-chun, WANG Ying, et al. Improvement on codeword structure in codebook model[J]. Journal of Jilin University(Science Edition), 2012, 50(3):517-522.
[17]  SHAH M, DENG J D, WOODFORD B J. A self-adaptive codebook (SACB) model for real-time background subtraction[J]. Image & Vision Computing, 2015, 38:52-64.
[18]  REN X, MALIK J. Learning a classification model for segmentation[C]//2003 IEEE International Conference on Computer Vision.[S.l.]:IEEE, 2003, 1:10-17.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133