|
- 2017
喷涂法制备石墨烯功能层及性能研究
|
Abstract:
以十二烷基苯磺酸钠(SDBS)为表面活性剂,采用超声分散工艺制备出稳定的石墨烯水分散液,并采用喷涂法分别在玻璃和n-Si基底上形成石墨烯薄膜。研究了表面活性剂浓度对石墨烯分散效果的影响。结果表明,采用浓度为15%的SDBS可获得稳定的石墨烯水溶液分散液。利用分光光度计和扫描电镜对石墨烯薄膜的透过率和表面形貌进行表征,结果表明其可见光透过率超过82%,薄膜具有刀刃状的边缘结构。采用二极管结构对石墨烯薄膜的场发射性能进行测试,其开启电场为3V/μm,场增强因子为3 580。实验结果表明,这是一种可行的、低成本的制作石墨烯功能层的有效方法。
[1] | CANTY R, GONZALEZ E, MACDONALD C, et al. Reduction expansion synthesis as strategy to control nitrogen doping level and surface area in graphene[J]. Materials, 2015, 8(10):7048-7058. |
[2] | FAN Y, IGARASHI G, JIANG W, et al. Highly strain tolerant and tough ceramic composite by incorporation of graphene[J]. Carbon, 2015, 90:274-283. |
[3] | ERVIN M H. Etching holes in graphene supercapacitor electrodes for faster performance[J]. Nanotechnology, 2015, 26(23):234003. |
[4] | GUO Y L, DI C A, LIU H T, et al. General route toward patterning of graphene oxide by a combination of wettability modulation and spin-coating[J]. ACS Nano, 2010, 4(10):5749-5754. |
[5] | OSTFELD A E, CATHELINE A, LIGSAY K, et al. Single-walled carbon nanotube transparent conductive films fabricated by reductive dissolution and spray coating for organic photovoltaics[J]. Applied Physics Letters, 2014, 105:253301. |
[6] | LI D, MüLLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2):101-105. |
[7] | HUANG G S, WU X L, CHENG Y C, et al. Fabrication and field emission property of a Si nanotip array[J]. Nanotechnology, 2006, 17:5573-5576. |
[8] | JUNG M S, KO Y K, JUNG D H, et al. Electrical and field-emission properties of chemically anchored single-walled carbon nanotube patterns[J]. Appied Physics Letters, 2005, 87:013114. |
[9] | PARK S J, PARK H, LEE Y, et al. Increasing the effective work function of multilayer rapheme films using silver nanoparticles[J]. Journal of Vacuum Science and Technology B, 2014, 32(1):011214. |
[10] | OTHMAN M, RITIKOS R, MUHAMMAD H, et al. Low-temperature plasma-enhanced chemical vapour deposition of transfer-free graphene thin films[J]. Materials Letters, 2015, 158:436-438. |
[11] | VAIANELLA F, ROSOLEN G, MAES B. Graphene as a transparent electrode for amorphous silicon-based solar cells[J]. Journal of Applied Physics, 2015, 117(24):243102. |
[12] | LAI L, YANG H, WANG L, et al. Preparation of supercapacitor electrodes through selection of graphene surface functionalities[J]. ACS Nano, 2012, 6(7):5941-5951. |
[13] | VADIVAAMBIGAI A, SENTHILVASAN P A, KOTHURKAR N, et al. Graphene-oxide-based electro chemical sensor for salicylic acid[J]. Nanoscience and Nanotechnology Letters, 2015, 7(2):140-146. |
[14] | LEE J S, OH J, JUN J, et al. Wireless hydrogen smart sensor based on Pt/graphene-immobilized radio-frequency identification tag[J]. ACS Nano, 2015, 9(8):7783-7790. |
[15] | EDA G, FANCHINI G, CHHOWALLA M. large area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology, 2008, 3(5):270-274. |
[16] | ARAPOV K, GORYACHEV A, WITH G D, et al. A simple and flexible route to large-area conductive transparent graphene thin-films[J]. Synthetic Metals, 2015, 201:67-75. |
[17] | WU Z S, PEI S F, REN W C, et al. Field emission of single-layer graphene films prepared by electrophoretic deposition[J]. Advanced Materials, 2009, 21:1756-1760. |
[18] | DENG J, ZENG B Q, WANG X J, et al. Lowering of the firing voltage and reducing of the discharge delay time in alternating current plasma display panels by a discontinuous spin-coated LaB6 film on the MgO protective layer[J]. AIP Advance, 2014(4):037109. |