|
- 2017
新型热电材料综述
|
Abstract:
热电材料能够实现热能和电能之间的相互转化,利用温度差进行发电是一种潜在的能源利用的方法,另外利用电学对热量的转化,可以进行温度的精确控制,在传感器和集成电路中有着广阔的应用前景。该文综述了近年来几类热电材料的种类、发展历程和研究现状,包括碲化物、硫族层状化合物、氧化物、笼合物,Half-Heusler材料,方钴矿材料、Zintl相热电材料以及铜硫族类材料。另外,对热电材料的应用做了一些归纳总结,希望能扩展热电器件的应用,实现未来的规模产业化。
[1] | PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345):66-69. |
[2] | HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science, 2008, 321(5888):554-557. |
[3] | ROWE D M. CRC handbook of thermoelectrics[M].[S.l.]:CRC, 1995. |
[4] | LIU C J, LIU Y L, LAI H C, et al. Effects of reaction temperature on thermoelectric properties of p-type nanostructured bi<sub>2-x</sub>sb<sub>x</sub>te<sub>3</sub> prepared using hydrothermal method and evacuated-and-encapsulated sintering[J]. Journal of electronic materials, 2013, 42(7):1550-1554. |
[5] | CUI J, XIU W, XUE H. High thermoelectric properties of p-type pseudobinary (Cu<sub>4</sub>Te<sub>3</sub>)<sub>x</sub>-(Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>)<sub>1-x</sub> alloys prepared by spark plasma sintering[J]. Journal of Applied Physics, 2007, 101(12):3713. |
[6] | BAUMGARDNER W J, CHOI J J, LIM Y F, et al. SnSe nanocrystals:Synthesis, structure, optical properties, and surface chemistry[J]. Journal of the American Chemical Society, 2010, 132(28):9519-9521. |
[7] | WANG Y, SUI Y, SU W. High temperature thermoelectric characteristics of Ca<sub>0.9</sub>R<sub>0.1</sub>MnO<sub>3</sub>(R=La, Pr,…, Yb)[J]. Journal of Applied Physics, 2008, 104(9):3703. |
[8] | OHTAKI M, ARAKI K, YAMAMOTO K. High thermoelectric performance of dually doped ZnO ceramics[J]. Journal of Electronic Materials, 2009, 38(7):1234-1238. |
[9] | KAGA H,ASAHI R,TANI T. Thermoelectric properties of highly textured Ca-doped (ZnO)<sub>m</sub>In<sub>2</sub>O<sub>3</sub> ceramics[J]. Japanese Journal of Applied Physics, 2004, 43(10R):7133. |
[10] | ONO Y, ISHIKAWA R, MIYAZAKI Y, et al. Crystal structure, electric and magnetic properties of layered cobaltite β-Na<sub>x</sub>CoO<sub>2</sub>[J]. Journal of Solid State Chemistry, 2002, 166(1):177-181. |
[11] | TAJIMA S, TANI T, ISOBE S, et al. Thermoelectric properties of highly textured NaCo<sub>2</sub>O<sub>4</sub> ceramics processed by the reactive templated grain growth (RTGG) method[J]. Materials Science and Engineering:B, 2001, 86(1):20-25. |
[12] | KUROSAKI K, MUTA H, UNO M, et al. Thermoelectric properties of NaCo<sub>2</sub>O<sub>4</sub>[J]. Journal of Alloys and Compounds, 2001, 315(1):234-236. |
[13] | WANG L, WANG M, ZHAO D. Thermoelectric properties of c-axis oriented Ni-substituted NaCoO<sub>2</sub> thermoelectric oxide by the citric acid complex method[J]. Journal of Alloys and Compounds, 2009, 471(1):519-523. |
[14] | TSAI P H, ZHANG T S, DONELSON R, et al. Power factor enhancement in Zn-doped Na<sub>0.8</sub>CoO<sub>2</sub>[J]. Journal of Alloys and Compounds, 2011, 509(16):5183-5186. |
[15] | MASSET A, MICHEL C, MAIGNAN A, et al. Misfit-layered cobaltite with an anisotropic giant magnetoresistance:Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub>[J]. Physical Review B, 2000, 62(1):166. |
[16] | KLIE R F, QIAO Q, PAULAUSKAS T, et al. Observations of Co<sup>4+</sup> in a higher spin state and the increase in the Seebeck coefficient of thermoelectric Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub>[J]. Physical Review Letters, 2012, 108(19):196601. |
[17] | PRASOETSOPHA N, PINITSOONTORN S, AMORNKITBAMRUNG V. Synthesis and thermoelectric properties of Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub> prepared by a simple thermal hydro-decomposition method[J]. Electronic Materials Letters, 2012, 8(3):305-308. |
[18] | YUANHUA L, JINLE L, YUHENG L, et al. High-temperature electrical transport behaviors in textured Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub>-based polycrystalline ceramic[J]. Applied Physics Letters, 2009, 94(7):072107.1-072107.3. |
[19] | SHIKANO M, FUNAHASHI R. Electrical and thermal properties of single-crystalline (Ca<sub>2</sub>CoO<sub>3</sub>)<sub>0.7</sub>CoO<sub>2</sub> with a Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub> structure[J]. Applied Physics Letters, 2003, 82:1851. |
[20] | LIU Y, LIN Y, SHI Z, et al. Preparation of Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub> and improvement of its thermoelectric properties by spark plasma sintering[J]. Journal of the American Ceramic Society, 2005, 88(5):1337-1340. |
[21] | KENFAUI D, BONNEFONT G, CHATEIGNER D, et al. Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub> ceramics consolidated by SPS process:Optimisation of mechanical and thermoelectric properties[J]. Materials Research Bulletin, 2010, 45(9):1240-1249. |
[22] | DIEZ J, TORRES M, RASEKH S, et al. Enhancement of Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub> thermoelectric properties by Cr for Co substitution[J]. Ceramics International, 2013, 39(6):6051-6056. |
[23] | LIU Y, LIN Y, JIANG L, et al. Thermoelectric properties of Bi<sup>3+</sup> substituted Co-based misfit-layered oxides[J]. Journal of Electroceramics, 2008, 21(1-4):748-751. |
[24] | MAY A F, TOBERER E S, SARAMAT A, et al. Characterization and analysis of thermoelectric transport in n-type Ba<sub>8</sub>Ga<sub>16-x</sub>Ge<sub>30+x</sub>[J]. Physical Review B, 2009, 80(12):125205. |
[25] | KAWANO K, KUROSAKI K, MUTA H, et al. Substitution effect on the thermoelectric properties of p-type half-Heusler compounds:ErNi<sub>1-x</sub>Pd<sub>x</sub>Sb[J]. Journal of Applied Physics, 2008, 104(1):013714. |
[26] | KAWANO K, KUROSAKI K, SEKIMOTO T, et al. Effect of Sn doping on the thermoelectric properties of ErNiSb-based p-type half-Heusler compound[J]. Applied Physics Letters, 2007, 91(6):062115. |
[27] | KIMURA Y, ZAMA A. Thermoelectric properties of p-type half-Heusler compound HfPtSn and improvement for high-performance by Ir and Co additions[J]. Applied Physics Letters, 2006, 89(17):172110. |
[28] | KIMURA Y, ZAMA A, MISHIMA Y. Thermoelectric properties of P-type half-Heusler compounds HfPtSn and ZrPtSn[C]//International Conference on Thermoelectrics. Vienna:IEEE, 2006:115-119. |
[29] | JOSHI G, DAHAL T, CHEN S, et al. Enhancement of thermoelectric figure-of-merit at low temperatures by titanium substitution for hafnium in n-type half-Heuslers Hf<sub>0.75-x</sub>Ti<sub>x</sub>Zr<sub>0.25</sub>NiSn<sub>0.99</sub>Sb<sub>0.01</sub>[J]. Nano Energy, 2013, 2(1):82-87. |
[30] | LIU W, JIE Q, LI Q, et al. Synchrotron X-ray study of filled skutterudites CeFe<sub>4</sub>Sb<sub>12</sub> and Ce<sub>0.8</sub>Fe<sub>3</sub>CoSb<sub>12</sub>[J]. Physica B:Condensed Matter, 2011, 406(1):52-55. |
[31] | UEDA M, KAWAHITO Y, TANAKA K, et al. Synthesis and basic properties of the filled skutterudite SmFe<sub>4</sub>Sb<sub>12</sub>[J]. Physica B:Condensed Matter, 2008, 403(5-9):881-883. |
[32] | PEI Y Z, CHEN L D, ZHANG W, et al. Synthesis and thermoelectric properties of K<sub>y</sub>Co<sub>4</sub>Sb<sub>12</sub>[J]. Applied Physics Letters, 2006, 89(22):221107. |
[33] | KORDAS K, TOTH G, MOILANEN P, et al. Chip cooling with integrated carbon nanotube microfin architectures[J]. Applied Physics Letters, 2007, 90(12):123105. |
[34] | BAR-COHEN A, KRAUS A, DAVIDSON S. Thermal frontiers in the design and packaging of microelectronic equipment[J]. Mech Eng, 1983, 105(6):53-59. |
[35] | YEH L. Review of heat transfer technologies in electronic equipment[J]. Journal of Electronic Packaging, 1995, 117(4):333-339. |
[36] | SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2):105-114. |
[37] | DU B, LI H, XU J, et al. Enhanced thermoelectric performance and novel nanopores in AgSbTe<sub>2</sub> prepared by melt spinning[J]. Journal of Solid State Chemistry, 2011, 184(1):109-114. |
[38] | DU B, LI H, TANG X. Enhanced thermoelectric performance in Na-doped p-type nonstoichiometric AgSbTe<sub>2</sub> compound[J]. Journal of Alloys and Compounds, 2011, 509(5):2039-2043. |
[39] | JOVOVIC V, HEREMANS J. Doping effects on the thermoelectric properties of AgSbTe<sub>2</sub>[J]. Journal of Electronic Materials, 2009, 38(7):1504-1509. |
[40] | WOJCIECHOWSKI K, SCHMIDT M. Structural and thermoelectric properties of AgSbTe<sub>2</sub>-AgSbSe<sub>2</sub> pseudobinary system[J]. Physical Review B, 2009, 79(18):184202. |
[41] | DU B, LI H, XU J, et al. Enhanced figure-of-merit in Se-doped p-type AgSbTe<sub>2</sub> thermoelectric compound[J]. Chemistry of Materials, 2010, 22(19):5521-5527. |
[42] | DAVIDOW J, GELBSTEIN Y. A comparison between the mechanical and thermoelectric properties of three highly efficient p-type GeTe-rich compositions:TAGS-80, TAGS-85, and 3% Bi<sub>2</sub>Te<sub>3</sub>-doped Ge<sub>0.87</sub>Pb<sub>0.13</sub>Te[J]. Journal of Electronic Materials, 2013, 42(7):1542-1549. |
[43] | CHRISTAKUDIS G C, PLACHKOVA S, SHELIMOVA L, et al. Thermoelectric figure of merit of some compositions in the system (GeTe)<sub>1-x</sub>[(Ag<sub>2</sub>Te)<sub>1-y</sub> (Sb<sub>2</sub>Te<sub>3</sub>)<sub>y</sub>]<sub>x</sub>[J]. Physica Status Solidi (a), 1991, 128(2):465-471. |
[44] | ZHANG S, HE J, JI X, et al. Effects of ball-milling atmosphere on the thermoelectric properties of TAGS-85 compounds[J]. Journal of Electronic Materials, 2009, 38(7):1142-1147. |
[45] | CUI J, XUE H, XIU W, et al. Thermoelectric properties of p-type pseudo-binary (Ag<sub>0.365</sub>Sb<sub>0.558</sub>Te)<sub>x</sub>-(Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub>)<sub>1-x</sub> (x=0-1.0) alloys prepared by spark plasma sintering[J]. Journal of Solid State Chemistry, 2006, 179(12):3751-3755. |
[46] | MEHTA R J, ZHANG Y, ZHU H, et al. Seebeck and figure of merit enhancement in nanostructured antimony telluride by antisite defect suppression through sulfur doping[J]. Nano Letters, 2012, 12(9):4523-4529. |
[47] | ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496):373-377. |
[48] | CHATTOPADHYAY T, PANNETIER J, VON SCHNERING H. Neutron diffraction study of the structural phase transition in SnS and SnSe[J]. Journal of Physics and Chemistry of Solids, 1986, 47(9):879-885. |
[49] | LI J, SUI J, PEI Y, et al. A high thermoelectric figure of merit ZT> 1 in Ba heavily doped BiCuSeO oxyselenides[J]. Energy & Environmental Science, 2012, 5(9):8543-8547. |
[50] | TERASAKI I. Transport properties and electronic states of the thermoelectric oxide NaCo<sub>2</sub>O<sub>4</sub>[J]. Physica B:Condensed Matter, 2003, 328(1):63-67. |
[51] | CEDERKRANTZ D, SARAMAT A, SNYDER G, et al. Thermal stability and thermoelectric properties of p-type Ba<sub>8</sub>Ga<sub>16</sub>Ge<sub>30</sub> clathrates[J]. Journal of Applied Physics, 2009, 106(7):074509. |
[52] | AVILA M, HUO D, SAKATA T, et al. Tunable charge carriers and thermoelectricity of single-crystal Ba<sub>8</sub>Ga<sub>16</sub>Sn<sub>30</sub>[J]. Journal of Physics:Condensed Matter, 2006, 18(5):1585. |
[53] | KIMURA Y, KUJI T, ZAMA A, et al. Thermoelectric properties of half-Heusler compounds N-type MNiSn and P-type MPtSn (M=Hf, Zr)[J]. Mrs Proceedings, 2006:980:II04-03. |
[54] | YANG J, STABLER F R. Automotive Applications of Thermoelectric Materials[J]. Journal of Electronic Materials, 2009, 38(7):1245-1251. |
[55] | JOSHI G, YAN X, WANG H, et al. Enhancement in thermoelectric figure-of-merit of an n-type half-heusler compound by the nanocomposite approach[J]. Advanced Energy Materials, 2011, 1(4):643-647. |
[56] | YAN X, LIU W, CHEN S, et al. Thermoelectric property study of nanostructured p-type half-Heuslers (Hf, Zr, Ti) CoSb<sub>0.8</sub>Sn<sub>0.2</sub>[J]. Advanced Energy Materials, 2013, 3(9):1195-1200. |
[57] | HE R, KIM H S, LAN Y, et al. Investigating the thermoelectric properties of p-type half-Heusler Hf<sub>x</sub>(ZrTi)<sub>1-x</sub>CoSb<sub>0.8</sub>Sn<sub>0.2</sub> by reducing Hf concentration for power generation[J]. RSC Adv, 2014, 4(110):64711-64716. |
[58] | CHEN S, LUKAS K C, LIU W, et al. Effect of hf concentration on thermoelectric properties of nanostructured n-type half-heusler materials HfxZr1-xNiSn0.99Sb0.01[J]. Advanced Energy Materials, 2013, 3(9):1210-1214. |
[59] | JOSHI G, HE R, ENGBER M, et al. NbFeSb-based p-type half-Heuslers for power generation applications[J]. Energy Environ Sci, 2014, 7(12):4070-4076. |
[60] | CHEN L, GAO S, ZENG X, et al. Uncovering high thermoelectric figure of merit in (Hf, Zr) NiSn half-Heusler alloys[J]. Applied Physics Letters, 2015, 107(4):041902. |
[61] | BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416):414-418. |
[62] | ZUO P, ZHANG S, JIN B, et al. Rapid synthesis and electrochemical property of Ag<sub>2</sub>Te nanorods[J]. The Journal of Physical Chemistry C, 2008, 112(38):14825-14829. |
[63] | GON ALVES A P, GODART C. New promising bulk thermoelectrics:Intermetallics, pnictides and chalcogenides[J]. The European Physical Journal B, 2014, 87(2):1-29. |
[64] | NODA Y, MIZUNO K, KANG Y S, et al. Preparation and properties of thermoelectric materials for intermediate temperature range applications[J]. Journal of the Japan Institute Of Metals, 1999, 63(11):1448-1453. |
[65] | MA H, SU T, ZHU P, et al. Preparation and transport properties of AgSbTe<sub>2</sub> by high-pressure and hightemperature[J]. Journal of Alloys and Compounds, 2008, 454(1):415-418. |
[66] | SU T, JIA X, MA H, et al. Enhanced thermoelectric performance of AgSbTe<sub>2</sub> synthesized by high pressure and high temperature[J]. Journal of Applied Physics, 2009, 105(7):073713. |
[67] | LEVIN E, COOK B A, HARRINGA J, et al. Analysis of Ce and Yb Doped TAGS 85 materials with enhanced thermoelectric figure of merit[J]. Advanced Functional Materials, 2011, 21(3):441-447. |
[68] | LEVIN E, BUD'KO S, SCHMIDT R K. Enhancement of thermopower of TAGS 85 high performance thermoelectric material by doping with the rare earth dy[J]. Advanced Functional Materials, 2012, 22(13):2766-2774. |
[69] | CUI J. Thermoelectric performance of quaternary Cu-BiSb-Te alloys prepared by cold pressing[J]. Journal of Alloys and Compounds, 2006, 415(1):216-219. |
[70] | WU H, ZHAO L D, ZHENG F, et al. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe<sub>0.7</sub>S<sub>0.3</sub>[J]. Nature Communications, 2014, 5:10.1038. |
[71] | SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites:High thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society, 2011, 133(20):7837-7846. |
[72] | PERUMAL S, ROYCHOWDHURY S, NEGI D S, et al. High thermoelectric performance and enhanced mechanical stability of P-type Ge<sub>1-x</sub>Sb<sub>x</sub>Te[J]. Chemistry of Materials, 2015, 27(20):7171-7178. |
[73] | HSU K F, LOO S, GUO F, et al. Cubic AgPb<sub>m</sub>SbTe<sub>2+m</sub>:Bulk thermoelectric materials with high figure of merit[J]. Science, 2004, 303(5659):818-821. |
[74] | POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320(5876):634-638. |
[75] | YU B, ZEBARJADI M, WANG H, et al. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites[J]. Nano Letters, 2012, 12(4):2077-2082. |
[76] | WANG X, LEE H, LAN Y, et al. Enhanced thermoelectric figure of merit in nanostructured N-type silicon germanium bulk alloy[J]. Applied Physics Letters, 2008, 93(19):193121. |
[77] | WANG Y, SUI Y, CHENG J, et al. Comparison of the high temperature thermoelectric properties for Ag-doped and Ag-added Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub>[J]. Journal of Alloys and Compounds, 2009, 477(1):817-821. |
[78] | YAN X, LIU W, WANG H, et al. Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf<sub>1-x</sub>Ti<sub>x</sub>CoSb<sub>0.8</sub>Sn<sub>0.2</sub>[J]. Energy & Environmental Science, 2012, 5(6):7543. |
[79] | CARRETE J, LI W, MINGO N, et al. Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling[J]. Physical Review X, 2014, 4(1):011019. |
[80] | XUE Q, LIU H, FAN D, et al. LaPtSb:a half-Heusler compound with high thermoelectric performance[J]. Physical Chemistry Chemical Physics Pccp, 2016, 18(27):17912. |
[81] | DING G, GAO G Y, YU L, et al. Thermoelectric properties of half-Heusler topological insulators MPtBi (M=Sc, Y, La) induced by strain[J]. Journal of Applied Physics, 2016, 119(2):025105. |
[82] | XI L. Filled skutterudites:from single to multiple filling[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2011, 41(6):706. |
[83] | SU X, LI H, YAN Y, et al. Microstructure and thermoelectric properties of CoSb<sub>2.75</sub>Ge<sub>0.25-x</sub>Te<sub>x</sub> prepared by rapid solidification[J]. Acta Materialia, 2012, 60(8):3536-3544. |
[84] | LIU W S, ZHANG B P, ZHAO L D, et al. Improvement of thermoelectric performance of CoSb<sub>3-x</sub> Te<sub>x</sub> skutterudite compounds by additional substitution of ivb-group elements for sb[J]. Chemistry of Materials, 2008, 20(24):7526-7531. |
[85] | PEI Y Z, YANG J, CHEN L D, et al. Improving thermoelectric performance of caged compounds through light-element filling[J]. Applied Physics Letters, 2009, 95(4):042101. |
[86] | ZHAO X Y, SHI X, CHEN L D, et al. Synthesis and thermoelectric properties of Sr-filled skutterudite K<sub>y</sub>Co<sub>4</sub>Sb<sub>12</sub>[J]. Journal of Applied Physics, 2006, 99(5):053711. |
[87] | CHEN L D, KAWAHARA T, TANG X F, et al. Anomalous barium filling fraction and N-type thermoelectric performance of Ba<sub>y</sub>Co<sub>4</sub>Sb<sub>12</sub>[J]. Journal of Applied Physics, 2001, 90(4):1864. |
[88] | SALES B, MANDRUS D, WILLIAMS R K. Filled skutterudite antimonides:a new class of thermoelectric materials[J]. Science, 1996, 272(5266):1325-1328. |
[89] | SALES B, CHAKOUMAKOS B, MANDRUS D. Thermoelectric properties of thallium-filled skutterudites[J]. Physical Review B, 2000, 61(4):2475. |
[90] | NOLAS G S, TAKIZAWA H, ENDO T, et al. Thermoelectric properties of Sn-filled skutterudites[J]. Applied Physics Letters, 2000, 77(1):52. |
[91] | TANG Y, QIU Y, XI L, et al. Phase diagram of In-Co-Sb system and thermoelectric properties of In-containing skutterudites[J]. Energy Environ. Sci., 2014, 7(2):812-819. |
[92] | BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416):414-418. |
[93] | TOBERER E S, ZEVALKINK A, SNYDER G J. Phonon engineering through crystal chemistry[J]. Journal of Materials Chemistry, 2011, 21(40):15843. |
[94] | AHN C, TRISCONE J M, MANNHART J. Electric field effect in correlated oxide systems[J]. Nature, 2003, 424(6952):1015-1018. |
[95] | REPAKA D M, MAHENDIRAN R. Giant magnetothermopower in charge ordered Nd0.75Na0.25MnO3[J]. Applied Physics Letters, 2013, 103(16):162408. |
[96] | OKAZAKI R, HORIKAWA A, YASUI Y, et al. Photoseebeck effect in ZnO[J]. Journal of the Physical Society of Japan, 2012, 81(11):114722. |
[97] | PETERS M, MCNEIL L E. High-pressure M?ssbauer study of SnSe[J]. Physical Review B, 1990, 41(9):5893. |
[98] | PENG K, LU X, ZHAN H, et al. Broad temperature plateau for high ZT s in heavily doped P-type SnSe single crystals[J]. Energy & Environmental Science, 2016, |
[99] | SHUAI J, KIM H S, LAN Y, et al. Study on thermoelectric performance by Na doping in nanostructured Mg<sub>1-x</sub>NaxAg<sub>0.97</sub>Sb<sub>0.99</sub>[J]. Nano Energy, 2015, 11:640-646. |
[100] | FU C, BAI S, LIU Y, et al. Realizing high figure of merit in heavy-band P-type half-Heusler thermoelectric materials[J]. Nature Communications, 2015, 6:101038. |
[101] | TAN Q, ZHAO L D, LI J F, et al. Thermoelectrics with earth abundant elements:Low thermal conductivity and high thermopower in doped SnS[J]. Journal of Materials Chemistry A, 2014, 2(41):17302-17306. |
[102] | OKAZAKI A. The crystal structure of germanium selenide GeSe[J]. Journal of the Physical Society of Japan, 1958, 13(10):1151-1155. |
[103] | OKAZAKI A, UEDA I. The crystal structure of stannous selenide SnSe[J]. Journal of the Physical Society of Japan, 1956, 11(4):470. |
[104] | GAO C, SHEN H, SUN L. Preparation and properties of zinc blende and orthorhombic SnS films by chemical bath deposition[J]. Applied Surface Science, 2011, 257(15):6750-6755. |
[105] | SOHILA S, RAJALAKSHMI M, MUTHAMIZHCHELVAN C, et al. Synthesis and characterization of SnS nanosheets through simple chemical route[J]. Materials Letters, 2011, 65(8):1148-1150. |
[106] | SHAPOSHNIKOV V, KRIVOSHEEVA A, BORISENKO V, et al. Structure, electronic and optical properties of tin sulfide[J]. ScienceJet, 2012, 1(16):1-4. |
[107] | PARKER D, SINGH D J. First principles investigations of the thermoelectric behavior of tin sulfide[J]. Journal of Applied Physics, 2010, 108(8):083712. |
[108] | CHATTOPADHYAY T, WERNER A, VON SCHNERING H, et al. Temperature and pressure induced phase transition in IV-VI compounds[J]. Revue de Physique Appliquée, 1984, 19(9):807-813. |
[109] | BERA C, JACOB S, OPAHLE I, et al. Integrated computational materials discovery of silver doped tin sulfide as a thermoelectric material[J]. Physical Chemistry Chemical Physics, 2014, 16(37):19894-19899. |
[110] | HAN Y M, ZHAO J, ZHOU M, et al. Thermoelectric performance of SnS and SnS-SnSe solid solution[J]. Journal of Materials Chemistry A, 2015, 3(8):4555-4559. |
[111] | OHTA H, SUGIURA K, KOUMOTO K. Recent progress in oxide thermoelectric materials:P-type Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub> and N-type SrTiO<sub>3</sub>[J]. Inorganic Chemistry, 2008, 47(19):8429-8436. |
[112] | HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science, 2008, 321(5888):554-557. |
[113] | XIE H, WANG H, PEI Y, et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-heusler thermoelectric materials[J]. Advanced Functional Materials, 2013, 23(41):5123-5130. |
[114] | DUAN B, ZHAI P, LIU L, et al. Beneficial effect of Se substitution on thermoelectric properties of Co<sub>4</sub>Sb<sub>11.9-x</sub>Te<sub>x</sub>Se<sub>0.1</sub> skutterudites[J]. Journal of Solid State Chemistry, 2012, 193:8-12. |
[115] | CAILLAT T, FLEURIAL J P, BORSHCHEVSKY A. Preparation and thermoelectric properties of semiconducting Zn<sub>4</sub>Sb<sub>3</sub>[J]. Journal of Physics and Chemistry of Solids, 1997, 58(7):1119-1125. |
[116] | ITO M, FURUMOTO D. Microstructure and thermoelectric properties of Na<sub>x</sub>Co<sub>2</sub>O<sub>4</sub>/Ag composite synthesized by the polymerized complex method[J]. Journal of Alloys and Compounds, 2008, 450(1):517-520. |
[117] | KIKUCHI A, OKINAKA N, AKIYAMA T. A large thermoelectric figure of merit of La-doped SrTiO<sub>3</sub> prepared by combustion synthesis with post-spark plasma sintering[J]. Scripta Materialia, 2010, 63(4):407-410. |
[118] | KUZNETSOV V, KUZNETSOVA L, KALIAZIN A, et al. Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds[J]. Journal of Applied Physics, 2000, 87:7871-7875. |
[119] | FUJITA I, KISHIMOTO K, SATO M, et al. Thermoelectric properties of sintered clathrate compounds Sr<sub>8</sub>Ga<sub>x</sub>Ge<sub>46-x</sub> with various carrier concentrations[J]. Journal of Applied Physics, 2006, 99(9):093707. |
[120] | SAIGA Y, SUEKUNI K, DENG S, et al. Optimization of thermoelectric properties of type-VIII clathrate Ba<sub>8</sub>Ga<sub>16</sub>Sn<sub>30</sub> by carrier tuning[J]. Journal of Alloys and Compounds, 2010, 507(1):1-5. |
[121] | CHEN Y X, DU B L, SAIGA Y, et al. Crystal growth and thermoelectric properties of type-VIII clathrate Ba<sub>8</sub>Ga<sub>15.9</sub>Sn<sub>30.1-x</sub>Ge<sub>x</sub> with p-type charge carriers[J]. Journal of Physics D:Applied Physics, 2013, 46(20):205302. |
[122] | DENG S, SAIGA Y, KAJISA K, et al. High thermoelectric performance of Cu substituted type-VIII clathrate Ba<sub>8</sub>Ga<sub>16-x</sub>Cu<sub>x</sub>Sn<sub>30</sub> single crystals[J]. Journal of Applied Physics, 2011, 109(10):103704. |
[123] | KISHIMOTO K, YAMAMOTO H, AKAI K, et al. Effect of Ge substitution on carrier mobilities and thermoelectric properties of sintered p-type Ba<sub>8</sub>Ga<sub>16+x</sub>Sn<sub>30-x-y</sub>Ge<sub>y</sub> with the type-VIII clathrate structure[J]. Journal of Physics D:Applied Physics, 2012, 45(44):445306. |
[124] | 严潇, 袁波. Half-Heusler热电材料的研究进展[J]. 西华大学学报(自然科学版), 2016(01):29-34. YAN Xiao, YUAN Bo. Recent progress in half-heusler thermoelectric materials[J]. Journal of Xihua University (Natural Science), 2016(01):29-34. |
[125] | UHER C, YANG J, HU S, et al. Transport properties of pure and doped MNiSn (M=Zr, Hf)[J]. Physical Review B, 1999, 59(13):8615. |
[126] | YAN X, JOSHI G, LIU W, et al. Enhanced thermoelectric figure of merit of p-type half-Heuslers[J]. Nano Lett, 2011, 11(2):556-60. |
[127] | FU C, BAI S, LIU Y, et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials[J]. Nat Commun, 2015, 6:8144. |
[128] | CULP S R, SIMONSON J W, POON S J, et al. (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700℃) p-type thermoelectric materials[J]. Applied Physics Letters, 2008, 93(2):022105. |
[129] | MASTRONARDI K, YOUNG D, WANG C C, et al. Antimonides with the half-Heusler structure:New thermoelectric materials[J]. Applied Physics Letters, 1999, 74(10):1415. |
[130] | TANG Y, CHEN S-W, SNYDER G J. Temperature dependent solubility of Yb in Yb-CoSb<sub>3</sub> skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics[J]. Journal of Materiomics, 2015, 1(1):75-84. |