|
- 2017
基于Bayesian网IP网络拥塞链路定位算法
|
Abstract:
在借助E2E路径性能主动探测技术进行内部拥塞链路推理的网络层析成像方法中,传统的利用路径探测计算链路丢包率的方法涉及线性方程组求逆,其计算量过大可能导致算法失效。对此,该文提出一种基于布尔代数的IP网络拥塞链路定位算法,通过对求解先验概率的线性方程组构造满秩系数矩阵,从而计算出各链路拥塞先验概率,再借助贝叶斯最大后验概率算法推理定位当前时刻拥塞链路集合。实验验证了该算法的有效性及准确性。
[1] | PALMER C R, STTEFFAN J G. Generating network topologies that obey power laws[C]//Proc of the GLOBECOM 2000: Global Telecommunications Conference. San Francisco: IEEE, 2000: 434-438. |
[2] | DENG K, LI Y, ZHU W, et al. Fast parameter estimation in loss tomography for networks of general topology[J]. The Annals of Applied Statistics, 2016, 10(1): 144-164. |
[3] | DUFFIELD N G. Network tomography of binary network performance characteristics[J]. IEEE Trans on Information Theory, 2006, 52(12): 5373-5388. |
[4] | BATSAKIS A, MALIK T, TERZIS A. Practical passive lossy link inference[C]//Proc of PAM 2005: 6th International Workshop. Boston: Springer Berlin Heidelberg, 2005, 3431: 362-367. |
[5] | WAXMAN B M. Routing of multipoint connections[J]. IEEE Journal of Selected Areas in Communication, 1988, 6(9): 1617-1622. |
[6] | BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. |
[7] | OGINO N, KITAHARA T, ARAKAWAET S, et al. Decentralized Boolean network tomography based on network partitioning[C]//In NOMS'16: IEEE/IFIP Network Operations and Management Symposium. Istanbul: IEEE, 2016: 162-170. |
[8] | NGUYEN H X, THIRAN P. The Boolean solution to the congested IP link location problem: Theory and practice[C]//Proceedings of IEEE INFOCOM'07: 26th Annual IEEE Conference on Computer Communications. Alaska: IEEE, 2007: 2117-2125. |
[9] | DUFFIELD N G, PRESTI F L, PAXSON V, et al. Inferring link loss using striped unicast probes[C]//Proceeding of the IEEE INFOCOM'01: Conference on Computer Communications. [S.l.]: IEEE Communications Society, 2001: 915-923. |
[10] | MAHAJAN R, SPRING N, WETHERALL D, et al. User-level internet path diagnosis[C]//Proceedings of the 19th ACM Symposium on Operating Systems Principles. New York: ACM, 2003: 106-119. |
[11] | MEDINA A, LAKHINA A, MATTA I, et al. BRITE: an approach to universal topology gerneration[C]//Proceedings of MASCOTS: Proceedings Ninth International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems. Washington: IEEE, 2001: 346-353. |