全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于移动用户浏览行为的推荐模型
A Recommendation Model Based on Browsing Behaviors of Mobile Users

DOI: 10.3969/j.issn.1001-0548.2017.06.020

Keywords: 移动用户,浏览行为的预测,概率频繁项集挖掘,推荐模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

推荐算法已经被广泛地应用于很多领域。但是如果利用传统的推荐算法预测移动用户浏览互联网的行为,并在此基础上对移动用户进行个性化的内容推荐,传统推荐算法的推荐效果往往比较差。该文通过分析移动用户浏览互联网的记录,得出传统推荐算法效果差的原因。在此基础上,提出了一个基于移动用户浏览行为的推荐模型,即RMBDMU。该模型可以对移动用户浏览互联网的行为进行预测,在预测的基础上对移动用户进行内容推荐。为了验证推荐模型的有效性,在真实的移动用户浏览互联网的行为数据上进行了实验。实验结果显示基于移动用户浏览行为的推荐模型比传统的推荐算法更为有效。

References

[1]  HERLOCKER J L, KONSTAN J A, BORCHERS A, et al. An algorithmic framework for performing collaborative filtering[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Berkeley:ACM, 1999:230-237.
[2]  SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. Hong Kong, China:ACM, 2001:285-295.
[3]  CAM L L. An approximation theorem for the Poisson binomial distribution.[J]. Pacific Journal of Mathematics, 1960, 10(4):1181-1197.
[4]  CHEN J, JIN Q, ZHAO S, et al. Does product recommendation meet its waterloo in unexplored categories:no, price comes to help[C]//Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. Gold Coast:ACM, 2014:667-676.
[5]  AGRAWAL R SRIKANT R. Fast algorithm for mining association rules[J]. Journal of Computer Science & Technology, 1994, 15(6):619-624.
[6]  HAN J, KAMBER M, PEI J. Data mining:Concepts and techniques[M]. Netherlands:Elsevier, 2011.
[7]  CHUI C K, KAO B, HUNG E. Mining frequent item sets from uncertain data[J]. 2007, 4426:47-58.
[8]  LEUNG K S. Uncertain frequent pattern mining[M]. Frequent Pattern Mining. New York:Springer International Publishing, 2014.
[9]  LIU C, CHEN L, ZHANG C. Summarizing probabilistic frequent patterns:a fast approach[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago:[s.n.], 2013:527-535.
[10]  WANG L, CHEUNG D W L, CHENG R, et al. Efficient mining of frequent item sets on large uncertain databases[J], IEEE Transactions on Knowledge and Data Engineering, 2012, 24(12):2170-2183.
[11]  SCHAFER J B, DAN F, HERLOCKER J, et al. Collaborative filtering recommender systems[C]//The Adaptive Web, Methods and Strategies of Web Personalization. Berlin, Heidelberg:Spring, 2015:46-45.
[12]  BERNECKER T, CHENG R, CHEUNG D W, et al. Model-based probabilistic frequent itemset mining[J]. Knowledge and Information Systems, 2013, 37(1):181-217.
[13]  FUNK S. FunkSVD[EB/OL]. (2006-12-11). http://sifter.org/~simon/journal/20061211.html.
[14]  KOREN Y, BELL R. Advances in collaborative filtering[M]. Recommender Systems Handbook. New York:Springer, 2011.
[15]  HU Y, KOREN Y, VOLINSKY C. Collaborative filtering for implicit feedback datasets[C]//Eighth IEEE International Conference on Data Mining. Pisa:IEEE, 2009:263-272.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133