全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

一种Mapreduce作业内存精确预测方法
An Innovative Memory Prediction Approach for Mapreduce Job

DOI: 10.3969/j.issn.1001-0548.2016.06.019

Keywords: 垃圾回收,Java虚拟机,mapreduce,资源管理

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对准确预测mapreduce作业内存资源需求困难的问题,根据Java虚拟机(JVM)的分代(JVM将堆内存划分为年轻代和年长代)内存管理特点,该文提出一种分代内存预测方法。建立年轻代大小与垃圾回收时间的模型,将寻找合理年轻代大小的问题转换为一个受约束的非线性优化问题,并设计搜索算法求解该优化问题。建立mapreduce作业的map任务和reduce任务性能与内存的关系模型,求解最佳性能的内存需求,从而获得map任务和reduce任务的年长代内存大小。实验结果表明,本文提出的方法能准确预测作业的内存需求;与默认配置相比,能提供平均6倍的性能提升。

References

[1]  LIU C, ZENG D, YAO H, et al. MR-COF:a genetic mapreduce configuration optimization framework[M].[S.l.]:Springer International Publishing, 2015:344-357.
[2]  XU L, LIU J, WEI J. FMEM:a fine-grained memory estimator for mapreduce jobs[C]//Proceedings of the 10th International Conference on Autonomic Computing. California, USA:USENIX in Cooperation with ACM SIGARCH, 2013:65-68.
[3]  KEJARIWAL A. A tool for practical garbage collection analysis in the cloud[C]//2013 IEEE International Conference on Cloud Engineering (IC2E). Boston, USA:IEEE, 2013:46-53.
[4]  REN Z, XU X, WAN J, et al. Workload characterization on a production hadoop cluster:A case study on taobao[C]//2012 IEEE International Symposium on Workload Characterization (ⅡSWC). California, USA:IEEE Computer Society, 2012:3-13.
[5]  CHEN Y, GANAPATHI A, GRIFFITH R, et al. The case for evaluating mapreduce performance using workload suites[C]//201119th IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS). Singapore:IEEE, 2011:390-399
[6]  DEAN J, GHEMAWAT S. Mapreduce:Simplified data processing on large clusters[C]//Proceedings of the 6th Conference on Eperating Systems Design and Implementation. Berkeley, CA, USA:USENIX Association, 2004, 6:137-150.
[7]  POLATO I, Ré R, GOLDMAN A, et al. A comprehensive view of Hadoop research-a systematic literature review[J]. Journal of Network and Computer Applications, 2014, 46:1-25.
[8]  GERA S. Derive heap size or mapreduce.*.memory.mb. automatically[EB/OL].[2014-03-08]. https://issues.apache.org/jira/browse/MAPREDUCE-5785.
[9]  LI M, ZENG L, MENG S, et al. MRONLINE:Mapreduce online performance tuning[C]//Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing. Vancouver, Canada:ACM, 2014:165-176.
[10]  SINGER J, KOVOOR G, BROWN G, et al. Garbage collection auto-tuning for java mapreduce on multi-cores[J]. ACM SIGPLAN Notices, 2011, 46(11):109-118.
[11]  ANGELOPOULOS V, PARSONS T, MURPHY J, et al. GcLite:an expert tool for analyzing garbage collection behavior[C]//201236th IEEE Annual Computer Software and Applications Conference Workshops (COMPSACW). Lzmir, Turkey:IEEE, 2012:493-502.
[12]  SUN M. Memory management in the Java hotspot virtual machine[EB/OL].[2014-08-28]. http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf.
[13]  RAO S S. Engineering optimization:Theory and practice[M]. New Jersey, USA:John Wiley & Sons, 2009.
[14]  FARAZ A, SEYONG L, MITHUNA T,et al. PUMA:Purdue mapreduce benchmarks suite[EB/OL].[2013-09-26]. http://web.ics.purdue.edu/~fahmad/benchmarks.htm.
[15]  HERODOTOU H, BABU S. Profiling, what-if analysis, and cost-based optimization of mapreduce programs[J]. Proceedings of the VLDB Endowment, 2011, 4(11):1111-1122.
[16]  HERODOTOU H. Hadoop performance models[EB/OL].[2014-12-04]. http://arxiv.org/pdf/1106.0940v1.pdf.
[17]  CLEVELAND W S, DEVLIN S J. Locally weighted regression:an approach to regression analysis by local fitting[J]. Journal of the American Statistical Association, 1988, 83(403):596-610.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133