全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于路径旅行时间分析的交通异常检测方法
Traffic Anomaly Detection Method Based on Travel Time of Path

DOI: 10.3969/j.issn.1001-0548.2018.06.011

Keywords: DBSCAN聚类算法,GPS,地图匹配,交通异常检测,路径旅行时间

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了综合考虑连续路段通行能力波动对旅行时间的影响,避免由单一路段通行能力的常规性波动所导致的交通异常误判,提出了一种基于路径旅行时间分析的交通异常检测算法。该算法将深圳市路网网格化为若干个地理子区,以地理子区为单位,使用ST-matching地图匹配算法将深圳市出租车GPS坐标记录点匹配到相应路段,采用基于密度的DBSCAN聚类算法计算路径旅行时间的时变异常阈值,来判定旅行时间的异常。该方法成本低廉,实施难度小,能精确灵敏地检测交通网络异常。

References

[1]  冯星宇, 周晨静, 荣建. 基于速度特性的城市快速路常发性交通拥堵研究[J]. 交通信息与安全, 2014, 32(1):29-33. FENG Xing-yu, ZHOU Chen-jing, RONG Jian. Recurrent congestion analysis based on speed variation characteristics on urban expressway[J]. Journal of Transport Information and Safety, 2014, 32(1):29-33.
[2]  钱颖. 基于GIS的出租车辆GPS地图匹配研究[D]. 昆明:云南大学, 2015. QIAN Ying. Research on map-matching of GPS based on GIS[D]. Kunming:Yunnan University, 2015.
[3]  LOU Yin, ZHANG Cheng-yang, ZHENG Yu, et al. Map-matching for low-sampling-rate GPS trajectories[C]//ACM Sigspatial International Symposium on Advances in Geographic Information System. Seattle:IEEE, 2009:352-361.
[4]  VYSOCHANSKIJ D F, PETUNIN Y I. Justification of the 3σ rule for unimodal distributions[J]. Theory of Probability & Mathematical Statistics, 1980, 21(21):25-36.
[5]  姚殿梅, 周彬. 红外线在道路测试中的应用[J]. 交通科技与经济, 2013, 15(3):45-48. YAO Dian-mei, ZHOU Bin. Application of infrared ray to road tests[J]. Technology & Economy in Areas of Communications, 2013, 15(3):45-48.
[6]  LEE J G, HAN Jia-wei, LI Xiao-lei. Trajectory outlier detection:a partition-and-detect framework[C]//2008 IEEE 24th International Conference on Data Engineering. Cancun:IEEE, 2008:140-149.
[7]  ZHANG Zhen-hua, HE Qing, TONG Hang-hang, et al. Spatial-temporal traffic flow pattern identification and anomaly detection with dictionary-based compression theory in a large-scale urban network[J]. Transportation Research Part C Emerging Technologies, 2016, 71:284-302.
[8]  姜桂艳, 闫赫, 李琦, 等. 基于悉尼协调自适应交通控制系统线圈数据的交通事件自动检测算法[J]. 吉林大学学报(工学版), 2012, 42(3):575-580. JIANG Gui-yan, YAN He, LI Qi, et al. Automated incident detection algorithm based on inductive loop data on Sydney coordinated adaptive traffic system[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(3):575-580.
[9]  DANG T T, NGAN H Y T, LIU Wei. Distance-based k-nearest neighbors outlier detection method in large-scale traffic data[C]//2015 IEEE International Conference on Digital Signal Processing. Singapore:IEEE, 2015:507-510.
[10]  方晓莹, 王小君. 基于视频的智能交通异常检测系统[J]. 微型机与应用, 2010, 29(6):35-38. FANG Xiao-ying, WANG Xiao-jun. A traffic abnormity detection algorithm based on vision in the ITS[J]. Microcomputer Its Applications, 2010, 29(6):35-38.
[11]  万福才, 尹承祥, 韩晓微, 等. 城市道路交通异常事件自动检测方法[J]. 沈阳大学学报(自然科学版), 2015, 27(1):30-33. WAN Fu-cai, YIN Cheng-xiang, HAN Xiao-wei, et al. Automatic detection method of abnormal events in city road traffic[J]. Journal of Shenyang University (Natural Science), 2015, 27(1):30-33.
[12]  王尧, 邵长桥, 刘洋. 城市快速路交通拥堵判定方法研究[J]. 交通信息与安全, 2014, 32(2):23-27. WANG Yao, SHAO Chang-qiao, LIU Yang. Traffic congestion identification method for urban expressway[J]. Journal of Transport Information and Safety, 2014, 32(2):23-27.
[13]  PAN Bei, ZHENG Yu, WILKIE D, et al. Crowd sensing of traffic anomalies based on human mobility and social media[C]//ACM Sigspatial International Conference on Advances in Geographic Information Systems. Orlando:ACM, 2013:344-353.
[14]  LI Xiao-lei, LI Zhen-hui, HAN Jia-wei, et al. Temporal outlier detection in vehicle traffic data[C]//2009 IEEE 25th International Conference on Data Engineering. Shanghai:IEEE, 2009:1319-1322.
[15]  HUANG Chao, WU Xian. Discovering road segmentbased outliers in urban traffic network[C]//IEEE GLOBECOM Workshops. Atlanta:IEEE, 2013:1350-1354.
[16]  ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//International Conference Knowledge Discovery and Data Mining. Portland:KDD, 1996:226-231.
[17]  郭敏, 肖翔, 蓝金辉, 等. 道路交通流短时预测方法综述[J]. 自动化技术与应用, 2009, 28(6):8-9. GUO Min, XIAO Xiang, LAN Jin-hui, et al. A summary of the short-time traffic flow forecasting methods[J]. Techniques of Automation & Applications, 2009, 28(6):8-9.
[18]  余柳, 于雷, 戚懿, 等. 基于浮动车数据的城市快速路交通事件检测算法研究[J]. 交通运输系统工程与信息, 2008, 8(4):36-41. YU Liu, YU Lei, QI Yi, et al. Traffic incident detection algorithm for urban expressways based on probe vehicle data[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(4):36-41.
[19]  LAXHAMMAR R, FALKMAN G. Online learning and sequential anomaly detection in trajectories[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6):1158-1173.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133