全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

非局域自相似约束的Shearlet稀疏正则化图像恢复
Shearlet Sparsity Regularized Image Reconstruction Based on Nonlocal Self-Similarity

DOI: 10.3969/j.issn.1001-0548.2016.01.006

Keywords: 增广拉格朗日,图像恢复,非局部自相似,Shearlet变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种结合非局部自相似和Shearlet稀疏性正则化的图像恢复变分模型。模型采用观测图像与待恢复图像的能量误差为保真项,联合Shearlet稀疏性和非局域自相似性为混合正则化项。正则化项同时兼顾图像的变换特性和自身结构全局特性。基于变量分裂增广拉格朗日法提出了求解该变分模型的数值算法。以图像去模糊和图像修复为例,对算法性能进行了测试。实验结果表明,该模型和所提算法能够较好地恢复图像,与其他算法相比,可获得更高的峰值信噪比(PSNR)和结构自相似指标(SSIM),具有更好的视觉效果。

References

[1]  KLANN E, MAASS P, RAMLAU R. Tikhonov regularization with wavelet shrinkage for linear inverse problems[J]. Journal for Inverse and Ill-Posed Problems, 2006, 14(6): 583-609.
[2]  DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[3]  AFONSO M, BIOUCAS-DIAS J, FIGURIREDO M. An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems[J]. IEEE Transactions on Image Processing, 2011, 20(3): 681-695.
[4]  BIOUCAS-DIAS J M, FIGUEIREDO M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithm for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004.
[5]  BRUNET D, VRSCAY E R, WANG Z. On the mathematical properties of the structural similarity index[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1488-1499.
[6]  DAUBECHIES I, DEFRISE M, de MOL C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457.
[7]  李家德, 张叶, 贾平. 采用非局部均值的超分辨率重构[J]. 光学精密工程, 2013, 21(6): 1576-1585. LI Jia-de, ZHANG Ye, JIA Ping. Super-resolution reconstruction using nonlocal means[J]. Opt Precision Eng, 2013, 21(6): 1576-1585.
[8]  ELAD M, FIGUEIREDO M A T, MA Y. On the role of sparse and redundant representation in image processing[J]. Proceedings of the IEEE-Special Issue on Applications of Sparse Representation and Compressive Sensing, 2010, 98(6): 972-982.
[9]  邓承志, 田伟, 汪胜前, 等. 近似稀疏正则化的红外图像 超分辨率重建[J]. 光学精密工程, 2014, 22(6): 1648-1654. DENG Cheng-zhi, TIAN Wei, WANG Sheng-qian, et al. Super-resolution reconstruction of approximate sparsity regularized infrared images[J]. Opt Precision Eng, 2014, 22(6): 1648-1654.
[10]  吴迪, 王奎民, 赵玉新, 等. 分段正则化正交匹配追踪算 法[J]. 光学精密工程, 2014, 22(5): 1395-1402. WU Di, WANG Kui-min, ZHAO Yu-xin, et al. Stagewise regularized orthogonal matching pursuit algorithm[J]. Opt Precision Eng, 2014, 22(5): 1395-1402.
[11]  LI Wei-hong, LI Quan-li, GONG Wei-guo, et al. Total variation blind deconvolution employing split bregman iteration[J]. Journal of Visual Communication and Image Representation, 2012, 23(3): 409-417.
[12]  WANG J, JEON G, JEONG J. Deinterlacing algorithm with an advanced non-local means filter[J]. Optical Engineering, 2012, 51(4): 47-49.
[13]  ZHANG K B, GAO X B, TAO D C, et al. Single image super-resolution with non-local means and steering kernel regression[J]. IEEE Trans Image Process, 2012, 21(11): 4544-4556.
[14]  EASLEY G R, LABATE D, LIM W. Sparse directional image representations using the discrete shearlet transforms[J]. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133