全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

石英增强光声光谱技术发展现状
Review of Quartz Enhanced Photoacoustic Spectroscopy

DOI: 10.3969/j.issn.1001-0548.2015.06.025

Keywords: 归一化噪声等效吸收系数,石英增强光声光谱,石英音叉,痕量气体检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

痕量气体检测技术在污染监测、工业生产、国防安全等领域均发挥了重要的作用。石英增强光声光谱技术(QEPAS)具有抗干扰能力强、体积小、灵敏度高(ppb量级)等特点,是痕量气体检测技术的研究热点之一,实现了对多种有毒气体的高灵敏度检测。该文叙述了QEPAS技术原理,回顾了5种不同结构QEPAS系统的发展情况及进展,并对该技术的研究前景进行了展望。

References

[1]  GEORGOULIAS A K, KIOUTSIOUKIS I, SYMEONIDIS P, et al. AMFIC web data base-asatellite system for the monitoring and forecasting of atmospheric pollution[J]. Journal of Engineering Science and Technology Review, 2008, 1: 58-61.
[2]  GüLLüK T, WAGNER H E, SLEMR F. A high-frequency modulated tunable diode laser absorption spectrometer for measurements of CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, and CO in air samples of a few cm<sup>3</sup>[J]. Rev Sci Instrum, 1997, 68: 230-239.
[3]  STATHEROPOULOS M, SIANOS E, AGAPIOU A, et al. Preliminary investigation of using volatile organic compounds from human expired air, blood and urine for locating entrapped people in earthquakes[J]. J Chromatogr B, 2005, 822(1-2): 112-117.
[4]  MITSUBAYASHI K, MATSUNAGA H, NISHIO G, et al. Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking[J]. Biosens Bioelectron, 2005, 20(8): 1573-1579.
[5]  PARMETER J E. The challenge of standoff explosives detection[C]//Proc Int Carnahan Conf Secur Technol. [S.l.]: [s.n.], 2005: 355-358.
[6]  WEIDMANN D, KOSTEREV A A, TITTLE F K, et al. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2004, 29: 1837-1839.
[7]  HORSTJANN M, BAKHIRKIN Y A, KOSTEREV A A, et al. Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2004, 79: 799-803.
[8]  LEWICKI R, WYSOCKIN G, KOSTEREV A A, et al. Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2007, 87: 157-162.
[9]  LIU K, GUO X Y, YI H M, et al. Off-beam quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2009, 34: 1594-1596.
[10]  YI H, CHEN W, GUO X, et al. An acoustic model for microresnonator in on-beam quartz-enhanced photo-acoustic spectroscopy[J]. Appl Phys B, 2012, 108: 361-367.
[11]  BORRI S, PATIMISCO P, SAMPAOLO A, et al. Terahertz quartz enhanced photo-acoustic sensor[J]. Appl Phys Lett, 2013, 103: 021105:1-021105:4.
[12]  DONG L, SPAGNOLO V, LEWICKI R, et al. Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor[J]. Opt Expr, 2011, 19: 24037-24045.
[13]  ZAYAKHANOV A, ZHAMSUEVA G, TSYDYPOV V, et al. Automated system for monitoring asmospheric pollution[J]. Meas Tech, 2008, 51: 1342-1346.
[14]  NAKISIMOVICH N, VOROTYNTSEV V, NIKITINA N, et al. Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis[J]. Sensor Actuat B, 1996, 36: 419-421.
[15]  唐前进, 邵杰. 远距离爆炸物探测技术的研究与应用[J]. 中国安防, 2009(9): 40-45. TANG Qian-jin, SHAO Jie. The research and application of remote explosive detection technology[J]. China Security & Protection, 2009(9): 40-45.
[16]  KERR E L, ATWOOD J G. The laser illuminated absorptivity spectrophone: a method for measurement of weak absorptivity in gases at laser wavelengths[J]. Appl Opt, 1968, 7: 915-921.
[17]  HARREN F J M, REUSS J, WOLTERING E J. Photoacoustic measurements of agriculturally interesting gases and detection of C<sub>2</sub>H<sub>4</sub> below the ppb level[J]. Appl Spectrosc, 1990, 44: 1360-1368.
[18]  BIJNEN F G C, REUSS J, HARREN F J M. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection[J]. Rev Sci Instrum, 1996, 67: 2914-2923.
[19]  FINK T, BUESEHER S, GAEBLER R. An improved CO<sub>2</sub> laser intracavity photoacoustic spectrometer for trace gas analysis[J]. Rev Sci Instrum, 1996, 67: 4000-4004.
[20]  SCHMOHL A, MIKLóS A, HESS P. Effects of adsorption-desorption processes on th response time and accuracy of photoacoustic detection of ammonia[J]. Appl Opt, 2001, 40: 2571-2578.
[21]  ARNDT R. Analytical line shapes for Lorentzian signals broadened by modulation[J]. Appl Phys, 1965, 36: 2522-2524.
[22]  KOSTEREV A A, TILLEL F K, SEREBRYAKOV D, et al. Applications of quartz tuning fork in spectroscopic gas sensing[J]. Rev Sci Instrum, 2005, 76: 043105:1-043105:9.
[23]  LEWICKI R, WYSOCKI G, KOSTEREV A A, et al. QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm[J]. Opt Expr, 2007, 15: 7357-7366.
[24]  WOJCIK M D, PHILLIPS M C, CANNON B D, et al. Gas-phase photoacoustic sensor at 8.41 μm using quartz tuning forks and amplitude-modulated quantum cascade lasers[J]. Appl Phys B, 2006, 85: 307-313.
[25]  KOSTEREV A A, BUERKI P R, DONG L, et al. QEPAS detector for rapid spectral measurements[J]. Appl Phys B, 2010, 100: 173-180.
[26]  WEIDMANN D, KOSTEREV A A, TITTEL F K. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2004, 29: 1837-1839.
[27]  KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K, et al. Photoacoustic phase shift as a chemically selective spectroscopic parameter[J]. Appl Phys B, 2004, 78: 673-676.
[28]  BOTTGER S, KOEHRING M, WILLER U, et al. Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs[J]. Appl Phys B, 2013, 113: 227-232.
[29]  BOTTGER S, KOEHRING M, WILLER U, et al. Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs[J]. Appl Phys B, 2013, 113: 227-232.
[30]  SPAGNOLO V, KOSTEREV A A, DONG L, et al. NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser[J]. Appl Phys B, 2010, 100: 125-130.
[31]  PATIMISCO P, SPAGNOLO V, VITIELLO M S, et al. Coupling external cavity mid-IR quantum cascade lasers with low loss hollow metallic/dielectric waveguides[J]. Appl Phys B, 2012, 108: 255-260.
[32]  K?HRING M, WILLER U, B?TTGER S, et al. Fiber-coupled ozone sensor based on tuning fork-enhanced interferometric photoacoustic spectroscopy[J]. IEEE J Sel Top Quantum Electron, 2012, 18: 1566-1572.
[33]  PATIMISCO P, SPAGNOLO V, VITIELLO M S, et al. Low-loss hollow waveguide fibers for mid-infrared quantum cascade laser sensing applications[J]. Sensors-Basel, 2013, 13: 1329-1340.
[34]  SPAGNOLO V, PATIMISCO P, BORRI S, et al. Mid-infrared fiber-coupled QCL-QEPAS sensor[J]. Appl Phys B, 2013, 112: 25-33.
[35]  PAUL P H, KYCHAKOFF G. Fiber-optic evanescent field absorption sensor[J]. Appl Phys Lett, 1987, 51(1): 6:12-6: 14.
[36]  CAO Y, JIN W, HO L H, et al. Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers[J]. Opt Lett, 2012, 37: 214-216.
[37]  CAO Y, JIN W, HO L H. Gas detection with evanescent-wave quartz-enhanced photoacoustic spectroscopy[J]. Proc SPIE, 2012, 8351: 835121:1-835121:6.
[38]  FLYGARE W H. Molecular relaxation[J]. Acc Chem Res, 1968, 1: 121-127.
[39]  BORRI S, PATIMISCO P, SAMPAOLO A, et al. Terahertz quartz enhanced photo-acoustic sensor[J]. Appl Phys Lett, 2013, 103: 021105:1-021105:4. SPAGNOLO V, PATIMISCO P, BORRI S, et al. Part-per-trillion level SF<sub>6</sub> detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation[J]. Opt Lett, 2012, 37: 4461-4463.
[40]  TITTEL F K, WYSOCKI G, KOSTEREV A A, et al. Semiconductor laser based trace gas sensor technology: Recent advances and applications[M]//EBRAHIM-ZADEH M, SOROKINA I T. Mid-infrared coherent sources and applications. Houten, Netherlands: Springer, 2008: 467-493.
[41]  KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K, et al. QEPAS methane sensor performance for humidified gases[J]. Appl Phys B, 2008, 92: 103-109.
[42]  WEIDMANN D, KOSTEREV A A, TITTLE F K, et al. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2004, 29: 1837-1839.
[43]  MEYER P L. Atmospheric pollution monitoring using CO<sub>2</sub>-laser photoacoustic spectroscopy and other techniques[J]. Rev Sci Instrum, 1990, 61: 1779-1807.
[44]  PATIMISCO P, SCAMARCIO G, TITTEL F K, et al. Quartz-enhanced photoacoustic spectroscopy: a review[J]. Sensors-Basel, 2014, 14: 6165-6206.
[45]  MIKLóS A, HESS P, MOHáSCIá, et al. Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 μm DFB diode laser[C]// Proceedings of the 10th International Conference on Photoacoustic and Photothermal Phenomena. Woodbury, NY, USA: [s.n.], 1999, 463: 126-128.
[46]  KOSTEREV A A, BAKHIRKIN Y A, CURL R F, et al. Quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2002, 27(21): 1902-1904.
[47]  WERLE P. Tunable diode laser absorption spectroscopy: recent findings and novel approaches[J]. Infrared Physics & Technology, 1996, 37(1): 59-66.
[48]  KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K. Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region[J]. Appl Phys B, 2005, 80: 133-138.
[49]  HORSTJANN M, BAKHIRKIN Y A, KOSTEREV A A, et al. Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2004, 79: 799-803.
[50]  KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K. Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region[J]. Appl Phys B, 2005, 80: 133-138.
[51]  WOJCIK M D, PHILLIPS M C, CANNON B D. Gas phase photoacoustic spectroscopy in the long-wave IR using quartz tuning forks and amplitude modulated quantum cascade lasers[J]. Proc SPIE, 2008, 6398, 63980S: 1-63980S:9.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133