全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

知识图谱技术综述
Review on Knowledge Graph Techniques

DOI: 10.3969/j.issn.1001-0548.2016.04.012

Keywords: 知识融合,知识图谱技术,知识表示,开放互联,语义处理

Full-Text   Cite this paper   Add to My Lib

Abstract:

知识图谱技术是人工智能技术的重要组成部分,其建立的具有语义处理能力与开放互联能力的知识库,可在智能搜索、智能问答、个性化推荐等智能信息服务中产生应用价值。该文在全面阐述知识图谱定义、架构的基础上,综述知识图谱中的知识抽取、知识表示、知识融合、知识推理四大核心技术的研究进展以及一些典型应用。该文还将评论当前研究存在的挑战。

References

[1]  SHETH A, THIRUNARAYAN K. Semantics empowered Web 3.0:managing enterprise, social, sensor, and cloud-based data and service for advanced applications[M]. San Rafael, CA:Morgan and Claypool, 2013.
[2]  王知津, 王璇, 马婧. 论知识组织的十大原则[J]. 国家图书馆学刊, 2012, 21(4):3-11. WANG Zhi-jin, WANG Xuan, MA Jing. The ten principles of knowledge organization[J]. Journal of The National Library of China, 2012, 21(4):3-11.
[3]  索传军. 网络信息资源组织研究的新视角[J]. 图书馆情报工作, 2013, 57(7):5-12. SUO Chuan-jun. A new perspective for web resource organization research[J]. Library and Information Service, 2013, 57(7):5-12.
[4]  BERNERS-LEE T, HENDLER J, LASSILA O. The semantic Web[J]. Scientific American Magazine, 2008, 23(1):1-4.
[5]  Shenshouer. Neo4j[EB/OL].[2016-05-09]. http://neo4j.com/.
[6]  DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault:a web-scale approach to probabilistic knowledge fusion[C]//Proc of the 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York:ACM, 2014.
[7]  OSCHINA. ConceptNet[EB/OL].[2016-01-09]. http://www.oschina.net/p/conceptnet.
[8]  CHINCHOR N, MARSH E. Muc-7 information extraction task definition[C]//Proc of the 7th Message Understanding Conf. Philadelphia:Linguistic Data Consortium, 1998:359-367.
[9]  RAU L F. Extracting company names from text[C]//Proc of the 7th IEEE Conf on Artificial Intelligence Applications. Piscataway, NJ:IEEE, 1991:29-32.
[10]  LIN Yi-feng, TSAI T, CHOU Wen-chi, et al. A maximum entropy approach to biomedical named entity recognition[C]//Proc of the 4th ACM SIGKDD Workshop on Data Mining in Bioinformatics. New York:ACM, 2004.
[11]  BENGIO Y, COURVILLE A, VINCENT P. Representation learning:a review and new perspectives[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828.
[12]  5lulu技术库. 余弦相似性[EB/OL]. (2015-03-16). http://tec.5lulu.com/computer/detail/k0n1g5e1hj8i7f.html. 5lulu Technology Library. Cosine similarity[EB/OL]. (2015-03-16). http://tec.5lulu.com/computer/detail/k0n1g5e1hj8i7f.html.
[13]  XIAO H, HUANG M, HAO Y, et al. TransG:a generative mixture model for knowledge graph embedding[J]. Arxiv Preprint ArXiv, 2015, 1509:05488.
[14]  HE S, LIU K, JI J, et al. Learning to represent knowledge graphs with Gaussian embedding[C]//Proc of CIKM. New York:ACM, 2015:623-632.
[15]  庄严, 李国良, 冯建华. 知识库实体对齐技术综述[J]. 计算机研究与发展, 2016, 01:165-192. ZHUANG Yan, LI Guo-liang, FENG Jian-hua. A survey on entity alignment of knowledge base[J]. Journal of Computer Research and Development, 2016, 1:165-192.
[16]  HERZOG T N, SCHEUREN F J, WINKLER W E. Data quality and record linkage techniques[M]. Berlin:Springer, 2007.
[17]  WINKLER W E. Methods for record linkage and Bayesian networks, RRS2002/05[R]. Washington DC:US Bureau of the Census, 2001.
[18]  VAPNIK V. The nature of statistical learning theory[M]. Berlin:Springer, 2000.
[19]  KANTARDZIC M. Data mining[M]. Hoboken, NJ:John Wiley & Sons, 2011.
[20]  COCHINWALA M, KURIEN V, LALK G, et al. Efficient data reconciliation[J]. Information Sciences, 2011, 137(14):1-15.
[21]  CHRISTEN P. Automatic training example selection for scalable unsupervised record linkage[C]//LNAI 5012:Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia Conf. Berlin:Springer, 2008.
[22]  DONG Xin, GABRILOVICH E, HEITZ G, et al. Knowledge vault:a Web-scale approach to probabilistic knowledge fusion[C]//Proc of the 20th Int Conf on Knowledge Discovery and Data Mining. New York:ACM, 2014:601-610.
[23]  Fader. Paralex[EB/OL].[2016-05-08]. http://knowitall.cs.washington.edu/paralex.
[24]  百度. 度秘[EB/OL]. (2015-09-13). http://xiaodu.baidu.com/. Baidu. Dumi[EB/OL]. (2015-09-13). http://xiaodu.baidu.com/.
[25]  百度百科. OASK问答系统[EB/OL].[2016-03-27]. http://baike.baidu.com/view/8206827.htm. Baidu Baike. OASK Question answering system[EB/OL].[2016-03-27]. http://baike.baidu.com/view/8206827.htm.
[26]  AMIT S. Introducing the knowledge graph[R]. America:Official Blog of Google, 2012.
[27]  曹倩, 赵一鸣. 知识图谱的技术实现流程及相关应用[J]. 情报理论与实践(ITA), 2015, 12(38):127-132. CAO Qian, ZHAO Yi-ming. The realization process and related applications of knowledge graph[J]. Information Studies:Theory & Application(ITA), 2015, 12(38):127-132.
[28]  Wikipedia. Knowledge graph[EB/OL].[2016-05-09]. https://en.wikipedia.org/wiki/Knowledge_Graph.
[29]  刘峤, 李杨, 杨段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3):582-600. LIU Qiao, LI yang, YANG Duan-hong, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3):582-600.
[30]  BIZER C, Al E. Linked data-the story so far[J]. International Journal on Semantic Web & Information System, 2009, 5(3):1-22.
[31]  BOLLACKER K, COOK R, TUFTS P. Freebase:a shared database of structured general human knowledge[C]//Proc of the 22nd AAAI Conf on Artificial Intelligence. Menlo Park, CA:AAAI, 2007:1962-1963.
[32]  WMF. Wikidata[EB/OL].[2015-11-11]. https://www.wikidata.org/wiki/Wikidata:Main_Page.
[33]  Wikipedia. Data revolution for Wikipedia[EB/OL]. (2012-03-30). https://www.wikimedia.org/.
[34]  SUCHANEK F M, KASNECI G, WEIKUM G. YAGO:a large ontology from wikipedia and wordnet[J]. Web Semantics Science Services & Agents on the World Wide Web, 2007, 6(3):203-217.
[35]  IMDB Official. IMDB[EB/OL].[2016-02-27]. http://www.imdb.com.
[36]  百度百科. IMDB[EB/OL].[2016-02-27]. http://baike.baidu.com/view/785720.htm?fromtitle=IMDB&fromid=925061&type=syn.BaiduBake.IMDB[EB/OL].[2016-02-27]. http://baike.baidu.com/view/785720.htm?fromtitle=IMDB&fromid=925061&type=syn.
[37]  MetaBrainz Foundation. Musicbrainz[EB/OL].[2016-06-06]. http://musicbrainz.org/.
[38]  全球网站库. Musicbrainz[EB/OL]. (2013-05-20). http://www.0430.com/us/web7028. Global Web Sites. Musicbrainz[EB/OL]. (2013-05-20). http://www.0430.com/us/web7028.
[39]  CONCEPTNET5. ConceptNet5[EB/OL].[2014-04-06]. http://conceptnet5.media.mit.edu/.
[40]  孙镇, 王惠临. 命名实体识别研究进展综述[J]. 现代图书情报技术, 2010(6):42-47. SUN Zhen, WANG Hui-lin. Overview on the advance of the research on named entity recognition[J]. New Technology of Library and Information Service, 2010(6):42-47.
[41]  赵军, 刘康, 周光有, 等. 开放式文本信息抽取[J]. 中文信息学报, 2011, 25(6):98-110. ZHAO Jun, LIU Kang, ZHOU Guang-you, et al. Open information extraction[J]. Journal of Chinese Information Processing, 2011, 25(6):98-110.
[42]  WU F, WELD D S. Open information extraction using Wikipedia[C]//Proceedings of Annual Meeting of the Association for Computational Linguistics. Sweden:ACL, 2010:118-127.
[43]  FADER A, SODERLAND S, ETZIONI O. Identifying relations for open information extraction[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Washington:EMNLP, 2015.
[44]  JANARA C M, STEPHEN S, OREN E. An analysis of open information extraction based on semantic role labeling[C]//Proceedings of K-CAP. New York:ACM, 2011:113-120.
[45]  刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2):1-16. LIU Zhi-yuan, SUN Mao-song, LIN Yan-kai, et al. Knowledge representation learning:a review[J]. Journal of Computer Research and Development, 2016, 53(2):1-16.
[46]  中国知网. 应用熵权系数法评标[EB/OL]. (2014-10-11). http://mall.cnki.net/magazine/Article/TSGD200302003.htm. China National Knowledge Infrastructure. Bidding evaluation based on entropy weight method[EB/OL]. (2014-10-11). http://mall.cnki.net/magazine/Article/TSGD200302003.htm.
[47]  JENATTON R, ROUX N L, BORDES A, et al. A latent factor model for highly multi-relational data[C]//Proc of NIPS. Cambridge, MA:MIT Press, 2012:3167-3175.
[48]  SUTSKEVER I, TENENBAUM J B, SALAKHUTDINOV R. Modelling relational data using Bayesian clustered tensor factorization[C]//Proc of NIPS. Cambridge, MA:MIT Press, 2009:1821-1828.
[49]  BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proc of NIPS. Cambridge, MA:MIT Press, 2013:2787-2795.
[50]  WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proc of AAAI. Menlo Park, CA:AAAI, 2014:1112-1119.
[51]  JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proc of ACL. Stroudsburg, PA:ACL, 2015:687-696.
[52]  XIE R, LIU Z, JIA J, et al. Representation learning of knowledge graphs with entity descriptions[C]//Proc of AAAI. Menlo Park, CA:AAAI, 2016.
[53]  MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proc of NIPS. Cambridge, MA:MIT Press, 2013:3111-3119.
[54]  COLLOBERT R, WESTON J. A unified architecture for natural language processing:Deep neural networks with multitask learning[C]//Proc of ICML. New York:ACM, 2008:160-167.
[55]  徐绪堪, 房道伟, 蒋勋, 等. 知识组织中知识粒度化表示和规范化研究[J]. 图书情报知识, 2014(6):101-106, 90. XU Xu-kan, FANG Dao-wei, JIANG Xun, et al. Research on knowledge granularity representation and standardization during knowledge organization[J]. Document, Information & Knowledge, 2014(6):101-106, 90.
[56]  张坤. 面向知识图谱的搜索技术(搜狗)[EB/OL]. (2015-02-18). http://www.cipsc.org.cn/kg1/. ZHANG Kun. The search technology oriented knowledge graph(Sogou)[EB/OL]. (2015-02-18). http://www.cipsc.org.cn/kg1/.
[57]  蒋勋, 徐绪堪. 面向知识服务的知识库逻辑结构模型[J].图书与情报, 2013(6):23-31. JIANG Xun, XU Xu-kan. Knowledge service-oriented model of knowledge base logical structure research[J]. Library and Information, 2013(6):23-31.
[58]  ZENG Yi, WANG Dong-sheng, ZHANG Tie-lin, et al. CASIA-KB:a multi-source Chinese semantic knowledge base built from structured and unstructured Web data[C]//Semantic Technology. Berlin:Springer, 2014:75-88.
[59]  MENDES P N, MUHLEISEN H, BIZER C. Sieve:Linked data quality assessment and fusion[C]//Proc of the 2nd Int Workshop on Linked Web Data Management at Extending Database Technology. New York:ACM, 2012:116-123.
[60]  TAN C H, AGICHTEIN E, IPEIROTIS P, et al. Trust, but verify:Predicting contribution quality for knowledge base construction and curation[C]//Proc of the 7th ACM Int Conf on Web Search and Data Mining. New York:ACM, 2014:553-562.
[61]  LEE T W, LEWICKI M S, GIROLAMI M, et al. Blind source separation of more sources than mixtures using overcomplete representation[J]. Signal Processing Letters, 1999, 6(4):87-90.
[62]  Ian Dickinson. Imp Iementation experience with the DIG 1.1specification[EB/OL]. (2004-05-10). http://www.hpl.hp.com/semweb/publications.html.
[63]  龚资. 基于OWL描述的本体推理研究[D]. 长春:吉林大学, 2007. GONG Zi. Research on ontology reasoning based on OWL[D]. Changchun:Jilin University, 2007.
[64]  Facebook. Facebook[EB/OL].[2014-02-04]. https://www.facebook.com/.
[65]  Twitter. Twitter[EB/OL].[2016-05-08]. https://twitter.com/.
[66]  百度百科.搜狗知立方[EB/OL].[2016-05-07]. http://baike.baidu.com/link?url=_J_2r2xYz0q-STwlYxqPZ00ZZuYyiA_kkZAohtC5EhmIzOjSwywKheEThY2gdXdzxS8_8ickSMomF5t-M0qxMa.BaiduBaike. Sogou zhi lifang[EB/OL].[2016-05-07]. http://baike.baidu.com/link?url=_J_2r2xYz0q-STwlYxqPZ00ZZuYyiA_kkZAohtC5EhmIzOjSwywKheEThY2gdXdzxS8_8ickSMomF5t-M0qxMa.
[67]  钟翠娇. 网络信息语义组织及检索研究[J]. 图书馆学研究, 2010, 75(17):68-71. ZHONG Cui-jiao. Research on semantic organization of web information and retrieval[J]. Research on Library Science, 2010, 75(17):68-71.
[68]  LIU Xiao-hua, ZHANG Shao-dian, WEI Fu-ru, et al. Recognizing named entities in tweets[C]//Proc of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:ACL, 2011:359-367.
[69]  WHITELAW C, KEHLENBECK A, PETROVIC N, et al. Web-scale named entity recognition[C]//Proc of the 17th ACM Conf on Information and Knowledge Management. New York:ACM, 2008.
[70]  AKBIK A, LOSER A. KRAKEN:N-ary facts in open information extraction[C]//Proceedings of AKBC-WEKEX at NAACL. New York:ACM, 2012:52-56.
[71]  DOMINGOS P, LOWD D. Markov logic:an interface layer for artificial intelligence[M]. San Rafael, CA:Morgan & Claypool, 2009.
[72]  ZHU Jun, NIE Zai-qing, LIU Xiao-jiang, et al. StatSnowball:a statistical approach to extracting entity relationships[C]//Proceedings of the 18th International Conference on World Wide Web. Switzerland:WWW, 2009:101-110.
[73]  DOMINGOS P, WEBB A. A tractable first-order probabilistic logic[C]//Proceedings of the 26th AAAI Conference on Artificial Intelligence. San Francisco, CA:AAAI, 2012.
[74]  SUCHANEK F M, KASNECI G, WEIKUM G. Yago:a core of semantic knowledge[C]//Proc of the 16th Int Conf on World Wide Web. New York:ACM, 2007:697-706.
[75]  WU Fei, WELD D S. Antonomously semantifying wikipedia[C]//Proc of the 16th ACM Conf on Information and Knowledge Management. New York:ACM, 2007:41-50.
[76]  王宇, 谭松波, 廖祥文, 等. 基于扩展领域模型的有名属性抽取[J]. 计算机研究与发展, 2010, 47(9):1567-1573. WANG Yu, TAN Song-bo, LIAO Xiang-wen, et al. Extracted domain model based on named attribute extraction[J]. Journal of Computer Research and Development, 2010, 47(9):1567-1573.
[77]  NEWCOMBE H B, KENNEDY J M, AXFORD S J, et al. Automatic linkage of vital records[J]. Science, 1959, 130(3381):954-959.
[78]  HAN J W, KAMBE M. Data mining:Concepts and techniques[M]. San Francisco, CA:Morgan Kaufmann, 2006.
[79]  MCCALLUM A, WELLNER B. Conditional models of identity uncertainty with application to noun coreference[C]//Proc of Advances in Neural Information Processing System. Cambridge, MA:MIT Press, 2005:905-912.
[80]  TEJADA S, KNOBLOCK C A, MINTON S. Learning domain independent string transformation weights for high accuracy object identification[C]//Proc of the 2002 ACM SIGKDD Conf on Knowledge Discovery and Data Mining. New York:ACM, 2002:350-359.
[81]  LI Juan-zi, WANG Zhi-chun, ZHANG Xiao, et al. Large scale instance matching via multiple indexes and candidate selection[J]. Knowledge-Based Systems, 2013, 50:112-120.
[82]  BHATTACHARYA I, GETOOR L. Collective entity resolution in relational data[J]. ACM Trans on Knowledge Discovery from Data, 2007, 1(2):9-15.
[83]  LACOSTE-Julien S, PALLA K, DAVIES A, et al. SIGMA:Simple greedy matching for aligning large knowledge bases[C]//Proc of the 2013 ACM SIGKDD Conf on Knowledge Discovery and Data Mining. New York:ACM, 2013:572-580.
[84]  BHATTACHARYA I, GETOOR L. Alatent dirichlet allocation model for unsupervised entity resolution[C]//Proc of the 6th SIAM Int Conf on Data Mining. Philadelphia, PA:SIAM, 2006:47-58.
[85]  DOMINGOS P. Multi-relational record linkage[C]//Proc of the KDD-2004 Workshop on Muti-Relational Data Mining. New York:ACM, 2004.
[86]  SINGLA P, DOMINGOS P. Entity resolution with Markov logic[C]//Proc of 2006 IEEE Int Conf on Data Mining(ICDM 2006). Piscataway, NJ:IEEE, 2006.
[87]  STUDER R, BENJAMINS V R, FENSEL D. Knowledge engineering:Principles and methods[J]. Data & Knowledge Engineering, 1998, 25(1):161-197.
[88]  WONG W, LIU Wei, BENNAMOUN M. Ontology learning from text:a look back and into the future[J]. ACM Computing Surveys, 2012, 44(4):18-24.
[89]  WU Wen-tao, LI Hong-song, WANG Hai-xun, et al. Probase:a probabilistic taxonomy for text understanding[C]//Proc of the 31st ACM SIGMOD Int Conf on Management of Data. New York:ACM, 2012.
[90]  史树明. 自动和半自动知识提取[J]. 中国计算机学会通讯, 2013, 9(8):65-73. SHI Shu-ming. Automatic and semi-automatic knowledge extraction[J]. China Computer Federation Communication, 2013, 9(8):65-73.
[91]  HARRIS Z S. Distributional structure[J]. Word, 1954, 10(23):146-162.
[92]  Carnegie Mellon University. NELL[EB/OL].[2016-06-08]. http://rtw.ml.cmu.edu/rtw/.
[93]  WANG C, DANILEVSKY M, DESAI N, et al. A phrase mining framework for recursive construction of a topical hierarchy[C]//Proc of the 19th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York:ACM, 2013:437-445.
[94]  FADER A, SODERLAND S, ETZIONI O. Identifying relations for open information extraction[C]//Proc of the Conf on Empirical Methods in Natual Language Processing. Stroudsburg, PA:ACL, 2011:1535-1545.
[95]  耿霞, 张继军, 李蔚妍. 知识图谱构建技术综述[J]. 计算机科学, 2014, 41(7):148-152. GENG Xia, ZHANG Ji-jun, LI Wei-yan. Knowledge graph construction techniques[J]. Computer Science, 2014, 41(7):148-152.
[96]  描述逻辑. 描述逻辑基础知识[EB/OL]. (2014-02-24). http://www.2cto.com/database/201402/280927.html. Description Logic. The foundation for description logic[EB/OL]. (2014-02-24). http://www.2cto.com/database/201402/280927.html.
[97]  LIU Shao-yuan, HSU K H, KUO Li-jing. A semantic service match approach based on wordnet and SWRL rules[C]//Proc of the 10th IEEE Int Conf on E-Business Engineering. Piscataway, NJ:IEEE, 2013:419-422.
[98]  LAO N, MITCHELL T, COHEN W W. Random walk inference and learning in a large scale knowledge base[C]//Proc of EMNLP. Stroudsburg, PA:ACL, 2011:529-539.
[99]  王志, 夏士雄, 牛强. 本体知识库的自然语言查询重写研究[J]. 微电子学与计算机, 2009, 26(8):137-139. WANG Zhi, XIA Shi-xiong, NIU Qiang. Research on natual language query rewriting for ontology-based knowledge base[J]. Microellectronics & Computer, 2009, 26(8):137-139.
[100]  BLANCO R, CAMBAZOGLU B B, MIKE P, et al. Entity recommendation in web search[C]//Pro of the 12th International Semantic Web Conference(ISWC). Berlin:Springer-Verlag, 2013:33-48.
[101]  BRACHMAN R J. What IS-A is and isn't:an analysis of taxonomic links in semantic networks[J]. Computer; (United States), 1983, 10(1):5-13.
[102]  Baidu. Zhi xin[EB/OL].[2016-06-08]. http://baike.baidu.com/link?url=V8IzyRd1vMlq5kq-BVMNf0yZHLmgXQ_SuPdjS3VW49NnzwurEQboXBTCQaEEa-SacwD2Emdn5wH6OFxQ5goU3a.
[103]  百度百科. Siri[EB/OL].[2016-05-02]. http://baike.baidu.com/subview/6573497/7996501.htm. Baidu Baike. Siri[EB/OL].[2016-05-02]. http://baike.baidu.com/subview/6573497/7996501.htm.
[104]  百度百科. Evi[EB/OL].[2016-03-18]. http://baike.baidu.com/view/7574050.htm. Baidu Baike. Evi[EB/OL].[2016-03-18]. http://baike.baidu.com/view/7574050.htm.
[105]  百度百科. Graph search[EB/OL].[2016-01-22]. http://baike.baidu.com/view/9966007.htm. Baidu Baike. Graph search[EB/OL].[2016-01-22]. http://baike.baidu.com/view/9966007.htm.
[106]  一淘网.知识图谱[EB/OL]. (2014-12-12). https://www.aliyun.com/zixun/aggregation/13323.html. ETao. Knowledge graph[EB/OL]. (2014-12-12). https://www.aliyun.com/zixun/aggregation/13323.html.
[107]  WANG Z, LI J, WANG Z, et al. Cross-lingual knowledge linking across wiki knowledge bases[C]//Proc of the 2012 Int Conf on World Wide Web. New York:ACM, 2012:459-468.
[108]  FlockDB Official. FlockDB[EB/OL].[2016-05-09]. http://webscripts.softpedia.com/script/Database-Tools/FlockDB-66248.html.
[109]  Graphdb Official. Graphdb[EB/OL].[2016-05-09]. http://www.graphdb.net/.
[110]  BIZER C, LEHMANN J, KOBILAROV G, et al. DBpedia-a crystallization point for the Web of data[J]. Web Semantics Science Services & Agents on the World Wide Web, 2009, 7(3):154-165.
[111]  MILLER G A. WordNet:a lexical database for English[J]. Communications of the ACM, 1995, 38(11):39-41.
[112]  MAEDCHE A, STAAB S. The text-to-onto ontology learning environment[C]//Software Demonstration at ICCS-2000-Eight International Conference on Conceptual Structures.[S.l.]:[s.n.], 2000.
[113]  JAIN A, PENNACCHIOTTI M. Open entity extraction from web search query logs[C]//Proc of the 23rd Int Conf on Computational Linguistics. Stroudsburg, PA:ACL, 2010:510-518.
[114]  BANKO M, CAFARELLA M J, SODERLAND S, et al. Open information extraction for the Web[C]//Proc of the 20th Int Joint Conf on Artificial Intelligence. New York:ACM, 2007:2670-2676.
[115]  杨博, 蔡东风, 杨华. 开放式信息抽取研究进展[J]. 中文信息学报, 2014, 4:1-11. YANG Bo, CAI Dong-feng, YANG Hua. Progress in open information extraction[J]. Journal of Chinese Information Processing, 2014, 4:1-11.
[116]  ETZIONI O, CAFARELLA M, DOWNEY D, et al. Unsupervised named-entity extraction from the Web:an experimental study[J]. Artificial Intelligence, 2005, 165(1):91-134.
[117]  SCHMITZ M M, BART R, SODERLAND S, et al. Open language learning for information extraction[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning(EMNLP-CONLL). New York:ACM, 2012.
[118]  LIU Xiao-jiang, YU Neng-hai. People summarization by combining named entity recognition and relation extraction[J]. Journal of Convergence Information Technology, 2010, 5(10):233-241.
[119]  BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1):1-7.
[120]  BORDES A, WESTON J, COLLOBERT R, et al. Learnting structured embeddings for knowledge bases[C]//Proc of AAAI. Menlo Park, CA:AAAI, 2011:301-306.
[121]  SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Proc of NIPS. Cambridge, MA:MIT Press, 2013:926-934.
[122]  YANG B, YIH W, HE X, et al. Embedding enties and relations for learning and inference in knowledge bases[C]//Proc of Int Conf on Learning Representations (ICLR). France:ICLR Press, 2015.
[123]  SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Proc of NIPS. Cambridge, MA:MIT Press, 2013:926-934.
[124]  NICKEL M, TRESP V, KRIEGEL H. A three-way model for collective learning on multi-relational data[C]//Proc of ICML. New York:ACM, 2011:809-816.
[125]  LIN Y, LIU Z, SUN M, et al. Learning entity and relation embedding for knowledge graph completion[C]//Proc of AAAI. Menlo Park, CA:AAAI, 2015.
[126]  COHEN W W, RICHMAN J. Learning to match and cluster large high-dimensional data sets for data integration[C]//Proc of the 2002 ACM SIGKDD Conf on Knowledge Discovery and Data Mining. New York:ACM, 2002:475-480.
[127]  SARAWAGI S, BHAMIDIPATY A. Interactive deduplication using active learning[C]//Proc of the 2002 ACM SIGKDD Conf on Knowledge Discovery and Data Mining. New York:ACM, 2002:269-278.
[128]  DONG X. Reference reconciliation in complex information spaces[C]//Proc of the 2005 ACM SIGMOD Int Conf on Management of Data. New York:ACM, 2005:85-96.
[129]  李文哲. 互联网金融, 如何用知识图谱识别欺诈行为[EB/OL].[2016-01-09]. http://mp.weixin.qq.com/s?__biz=MjM5MTQzNzU2NA==&mid=401686695&idx=1&sn=aa7ca7f5c448075771ebd3533857b422&scene=23&srcid=0109l5viLtbzxKSzzw5hFdIg#rd. LI Wen-zhe. Internet finance, how to identifiy fraud conduct using knowledge graph[EB/OL].[2016-01-09]. http://mp.weixin.qq.com/s?__biz=MjM5MTQzNzU2NA==&mid=401686695&idx=1&sn=aa7ca7f5c448075771ebd3533857b422&scene=23&srcid=0109l5viLtbzxKSzzw5hFdIg#rd.
[130]  Senselab. Center for medical informatics at yale university school of medicine yale university school of medicine[EB/OL].[2016-01-08]. http://ycmi.med.yale.edu/.
[131]  田玲, 马丽仪. 基于用户体验的网站信息服务水平综合评价研究[J]. 生态经济, 2013(10):160-162. TIAN Ling, MA Li-yi. Research on comprehensive evaluation of website information services based on user experience[J]. Ecological Economy, 2013(10):160-162.
[132]  李涓子. 知识图谱:大数据语义链接的基石[EB/OL]. (2015-02-20). http://www.cipsc.org.cn/kg2/. LI Juan-zi. Knowledge graph:the foundation for big data semantic link[EB/OL]. (2015-02-20). http://www.cipsc.org.cn/kg2/.
[133]  ZENG D, LIU K, CHEN Y, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Proc of EMNLP. Stroudsburg, PA:ACL, 2015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133