全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

网络科学中的互联网加——理念、评述和展望
The Internet Plus in Network Science——Ideals, Overviews and Perspectives

DOI: 10.3969/j.issn.1001-0548.2016.04.014

Keywords: 大数据,动力学,博弈论,互联网加,网络科学,纯数学

Full-Text   Cite this paper   Add to My Lib

Abstract:

从互联网加的角度回顾网络科学的某些进展。众所周知网络科学的第一波浪潮,互联网加大数据,是由外国学者在千禧年前夕掀起的。紧接着网络科学的第二波浪潮,互联网加动力学,则是由中国学者发动的。该文预测,网络科学的第三波浪潮,互联网加博弈论和纯数学研究或许即将来临。衷心希望中国年轻学者对网络科学做出更大的贡献。

References

[1]  WATTS D J, STROGATZ S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393:440-442.
[2]  Lü L Y, ZHANG Y C, YEUNG C H, et al. Leaders in social networks, the delicious case[J]. PLoS One, 2011, 6:e21202.
[3]  LIU Y T, GAO B, LIU T Y, et al. BrowseRank:Letting web users vote for page importance[C]//Proceedings of the 31st Annual International ACM Sigir Conference on Research and Development in Information Retrieval. New York:ACM, 2008:451-458.
[4]  LU W L, LI X, RONG Z H. Global stabilization of complex networks with digraph topologies via a local pinning algorithm[J]. Automatica, 2010, 46:116-121.
[5]  LIU Y Y, SLOTINE J J, BARABASI A L. Controllability of complex networks[J]. Nature, 2011, 473:167-173.
[6]  YUAN Z Z, ZHAO C, DI Z R, et al. Exact controllability of complex networks[J]. Nature Communications, 2013, 4:2447.
[7]  DONETTI L, HURTADO P I, MU?OZ M A. Entangled networks, super-homogeneity, and the optimal network topology[J]. Phys Rev Lett, 2005, 95:188701.
[8]  XUAN Q, LI Y J, WU T J. Optimal symmetric networks in terms of minimizing average shortest path length and their sub-optimal growth model[J]. Physica A, 2009, 388:1257-1267.
[9]  SHI D H, CHEN G R, THONG W W K, et al. Searching for optimal network topology with best possible synchronizability[J]. IEEE Circ and Syst magazine, 2013, 10:66-75.
[10]  YAN X Y, WANG W X, CHEN G R, et al. Multiplex congruence network of natural numbers[J]. Scientific Reports, 2016, 4:23714.
[11]  NOWAK M A, HIGHFIELD R. Super cooperators:Altruism, evolution, and why we need each other to succeed[M]. New York:Free Press, 2011.
[12]  BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286:509-512.
[13]  KLEINBERG J M. Navigation in a small world[J]. Nature, 2000, 406:845.
[14]  SHI D H. Critical thinking of scale-free networks:similarities and differences in power-law random graphs[J]. National Science Review, 2014, 1:337-338.
[15]  SHI D H, CHEN Q H, LIU L M. Markov chain-based numerical method for degree distributions of growing networks[J]. Physical Review E, 2005, 71:036140.
[16]  SHI D H, ZHOU H J, LIU L M. Markovian iterative method for degree distributions of growing networks[J]. Physical Review E, 2010, 82:031105.
[17]  Lü L Y, ZHOU T. Link prediction in complex networks:a survey[J]. Physica A, 2011, 390:1150-1170.
[18]  HAN X, SHEN Z S, WANG W X, et al. Robust reconstruction of complex networks from sparse data[J]. Phys Rev Lett, 2015, 114:028701.
[19]  CANDèS E J, ROMBERG J, TAO T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 522:489-509.
[20]  BARAHONA M, PECORA L M. Synchronization in small-world systems[J]. Phys Rev Lett, 2002, 89:054101.
[21]  Lü L Y, MEDO M, YEUNG C H, et al. Recommender systems[J]. Physics Reports, 2012, 519:1-49.
[22]  Lü L Y, PAN L, ZHOU T, et al. Toward link predictability of complex networks[J]. Proceedings of the National Academy of Sciences, 2015, 112:2325-2330.
[23]  SHI D H. Reconstructing the family tree with blood relationship[J]. Modern Physics, 2015, 159:4-10.
[24]  PRESS W, DYSON F. Iterated prisoner's dilemma contains strategies that dominate any evolutionary opponent[J]. Proceedings of the National Academy of Sciences, 2012, 109:10409.
[25]  Lü L Y, ZHOU T, ZHANG Q M, et al. The H-index of a network node and its relation to degree and coreness[J]. Nature Communications, 2016, 7:10168.
[26]  LANGLANDS R. Problems in the theory of automorphic forms[M]. Lecture Notes in Math 170, Berlin:SpringerVerlag, 1970.
[27]  BIRCH B J, SWINNERTON-DYER H P F. Notes on elliptic curves I and Ⅱ[J]. Reine Angew Math, 1963, 212:7-25; 1965, 218:79-108.
[28]  FENG K Q. Non-congruent numbers and elliptic curves with rank zero[M]. Hefei:University of Science & Technology China Press, 2008.
[29]  ERD?S P, RéNYI A. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5:17-61.
[30]  BONACICH P. Factoring and weighting approaches to status scores and clique identification[J]. J Math Sociology, 1972, 2:113-120.
[31]  BRIN S, PAGE L. The anatomy of a large-scale hypertextual web search engine[J]. Computer Networks and ISDN Systems, 1998, 30:107-117.
[32]  WANG X F, CHEN G R. Synchronization in scale-free dynamical networks:Robustness and fragility[J]. IEEE Trans Circ Syst, 2002, 49:54-62.
[33]  WANG X F, CHEN G R. Pinning control of scale-free dynamical networks[J]. Physica A, 2002, 310:521-531.
[34]  ZHOU J, LU J A, Lü J H. Pinning adaptive synchronization of a general complex dynamical network[J]. Automatica, 2008, 44:996-1003.
[35]  MACARTHUR, B D, ?ANCHEZ-GARCíA R J. Spectral characteristics of network redundancy[J]. Physical Review E, 2009, 80:026117.
[36]  SZOLNOKI A, PERC M. Evolution of extortion in structured populations[J]. Physical Review E, 2014, 89:022804.
[37]  RONG Z H, WU Z X, HAO D, et al. Diversity of time scale promotes the maintenance of extortionists in spatial prisoner's dilemma game[J]. New Journal of Physics, 2015, 17:033032.
[38]  SZAB G, FATH G. Evolutionary games on graphs[J]. Physical Repots, 2007, 446:97-216.
[39]  KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6:888-893.
[40]  MORDELL L J. On the rational solutions of the indeterminate equation of the third and fourth degrees[J]. Proc Cambridge Philos Soc, 1922, 21:179-192.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133