|
- 2016
网络科学中的互联网加——理念、评述和展望
|
Abstract:
从互联网加的角度回顾网络科学的某些进展。众所周知网络科学的第一波浪潮,互联网加大数据,是由外国学者在千禧年前夕掀起的。紧接着网络科学的第二波浪潮,互联网加动力学,则是由中国学者发动的。该文预测,网络科学的第三波浪潮,互联网加博弈论和纯数学研究或许即将来临。衷心希望中国年轻学者对网络科学做出更大的贡献。
[1] | WATTS D J, STROGATZ S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393:440-442. |
[2] | Lü L Y, ZHANG Y C, YEUNG C H, et al. Leaders in social networks, the delicious case[J]. PLoS One, 2011, 6:e21202. |
[3] | LIU Y T, GAO B, LIU T Y, et al. BrowseRank:Letting web users vote for page importance[C]//Proceedings of the 31st Annual International ACM Sigir Conference on Research and Development in Information Retrieval. New York:ACM, 2008:451-458. |
[4] | LU W L, LI X, RONG Z H. Global stabilization of complex networks with digraph topologies via a local pinning algorithm[J]. Automatica, 2010, 46:116-121. |
[5] | LIU Y Y, SLOTINE J J, BARABASI A L. Controllability of complex networks[J]. Nature, 2011, 473:167-173. |
[6] | YUAN Z Z, ZHAO C, DI Z R, et al. Exact controllability of complex networks[J]. Nature Communications, 2013, 4:2447. |
[7] | DONETTI L, HURTADO P I, MU?OZ M A. Entangled networks, super-homogeneity, and the optimal network topology[J]. Phys Rev Lett, 2005, 95:188701. |
[8] | XUAN Q, LI Y J, WU T J. Optimal symmetric networks in terms of minimizing average shortest path length and their sub-optimal growth model[J]. Physica A, 2009, 388:1257-1267. |
[9] | SHI D H, CHEN G R, THONG W W K, et al. Searching for optimal network topology with best possible synchronizability[J]. IEEE Circ and Syst magazine, 2013, 10:66-75. |
[10] | YAN X Y, WANG W X, CHEN G R, et al. Multiplex congruence network of natural numbers[J]. Scientific Reports, 2016, 4:23714. |
[11] | NOWAK M A, HIGHFIELD R. Super cooperators:Altruism, evolution, and why we need each other to succeed[M]. New York:Free Press, 2011. |
[12] | BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286:509-512. |
[13] | KLEINBERG J M. Navigation in a small world[J]. Nature, 2000, 406:845. |
[14] | SHI D H. Critical thinking of scale-free networks:similarities and differences in power-law random graphs[J]. National Science Review, 2014, 1:337-338. |
[15] | SHI D H, CHEN Q H, LIU L M. Markov chain-based numerical method for degree distributions of growing networks[J]. Physical Review E, 2005, 71:036140. |
[16] | SHI D H, ZHOU H J, LIU L M. Markovian iterative method for degree distributions of growing networks[J]. Physical Review E, 2010, 82:031105. |
[17] | Lü L Y, ZHOU T. Link prediction in complex networks:a survey[J]. Physica A, 2011, 390:1150-1170. |
[18] | HAN X, SHEN Z S, WANG W X, et al. Robust reconstruction of complex networks from sparse data[J]. Phys Rev Lett, 2015, 114:028701. |
[19] | CANDèS E J, ROMBERG J, TAO T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 522:489-509. |
[20] | BARAHONA M, PECORA L M. Synchronization in small-world systems[J]. Phys Rev Lett, 2002, 89:054101. |
[21] | Lü L Y, MEDO M, YEUNG C H, et al. Recommender systems[J]. Physics Reports, 2012, 519:1-49. |
[22] | Lü L Y, PAN L, ZHOU T, et al. Toward link predictability of complex networks[J]. Proceedings of the National Academy of Sciences, 2015, 112:2325-2330. |
[23] | SHI D H. Reconstructing the family tree with blood relationship[J]. Modern Physics, 2015, 159:4-10. |
[24] | PRESS W, DYSON F. Iterated prisoner's dilemma contains strategies that dominate any evolutionary opponent[J]. Proceedings of the National Academy of Sciences, 2012, 109:10409. |
[25] | Lü L Y, ZHOU T, ZHANG Q M, et al. The H-index of a network node and its relation to degree and coreness[J]. Nature Communications, 2016, 7:10168. |
[26] | LANGLANDS R. Problems in the theory of automorphic forms[M]. Lecture Notes in Math 170, Berlin:SpringerVerlag, 1970. |
[27] | BIRCH B J, SWINNERTON-DYER H P F. Notes on elliptic curves I and Ⅱ[J]. Reine Angew Math, 1963, 212:7-25; 1965, 218:79-108. |
[28] | FENG K Q. Non-congruent numbers and elliptic curves with rank zero[M]. Hefei:University of Science & Technology China Press, 2008. |
[29] | ERD?S P, RéNYI A. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5:17-61. |
[30] | BONACICH P. Factoring and weighting approaches to status scores and clique identification[J]. J Math Sociology, 1972, 2:113-120. |
[31] | BRIN S, PAGE L. The anatomy of a large-scale hypertextual web search engine[J]. Computer Networks and ISDN Systems, 1998, 30:107-117. |
[32] | WANG X F, CHEN G R. Synchronization in scale-free dynamical networks:Robustness and fragility[J]. IEEE Trans Circ Syst, 2002, 49:54-62. |
[33] | WANG X F, CHEN G R. Pinning control of scale-free dynamical networks[J]. Physica A, 2002, 310:521-531. |
[34] | ZHOU J, LU J A, Lü J H. Pinning adaptive synchronization of a general complex dynamical network[J]. Automatica, 2008, 44:996-1003. |
[35] | MACARTHUR, B D, ?ANCHEZ-GARCíA R J. Spectral characteristics of network redundancy[J]. Physical Review E, 2009, 80:026117. |
[36] | SZOLNOKI A, PERC M. Evolution of extortion in structured populations[J]. Physical Review E, 2014, 89:022804. |
[37] | RONG Z H, WU Z X, HAO D, et al. Diversity of time scale promotes the maintenance of extortionists in spatial prisoner's dilemma game[J]. New Journal of Physics, 2015, 17:033032. |
[38] | SZAB G, FATH G. Evolutionary games on graphs[J]. Physical Repots, 2007, 446:97-216. |
[39] | KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6:888-893. |
[40] | MORDELL L J. On the rational solutions of the indeterminate equation of the third and fourth degrees[J]. Proc Cambridge Philos Soc, 1922, 21:179-192. |