|
- 2016
双频工作同轴双电子注回旋管的理论与实验研究
|
Abstract:
该文章研究双频工作同轴双电子注回旋管。数值计算和粒子模拟结果表明同轴双电子注回旋管可以同时工作在两个不同的频率,且由于两个电子注间的非线性耦合,高次回旋谐波所对应模式的功率显著增强。完成了双频工作的同轴双电子注回旋管的原理样管加工并进行了验证性实验,实验测得两个工作频率分别为0.11 THz和0.22 THz,输出功率20 kW,并提出了一种分离双频工作同轴双电子注回旋管中两个不同频率电磁波功率的方法。
[1] | LIU D W, YAN Y, LIU S G. Time-dependent multi-mode nonlinear theory of dual-frequency operation coaxial gyrotron with two electron beams[J]. Fus Eng Des, 2012, 87:1533-1535. |
[2] | LIU S G, YUAN X S, FU W J, et al. The coaxial gyrotron with two electron beams. I. Linear theory and nonlinear theory[J]. Phys Plasmas, 2007, 14:103113. |
[3] | LIU D W, Y YAN, LIU S G. Characteristics analysis of a coaxial cavity with a misaligned inner rod[J]. IEEE Trans Electron Dev, 2012, 59:230-233. |
[4] | BYKOV Y V, GINZBURG N S, GLYAVIN M Y, et al. The development of gyrotrons and their applications for plasma science and material processing[J]. Terahertz Science and Technology, 2014, 7:70. |
[5] | HIDAKA Y, CHOI E M, MASTOVSKY I, et al. Observation of large arrays of plasma filaments in air breakdown by 1.5-MW 110-GHz gyrotron pulses[J]. Physical Review Letters, 2008, 100:035003. |
[6] | MITSUDO S, ARIPIN, SHIRAI T, et al. High power, frequency tunable, submillimeter wave ESR device using a gyrotron as a radiation source[J]. J Infrared Milli Terahz Waves, 2000, 21:661-676. |
[7] | BRATMAN V L, FEDOTOV A E, KALYNOV Y K, et al. THz gyrotron and BWO designed for operation in DNP-NMR spectrometer magnet[J]. J Infrared Milli Terahz Waves, 2013, 34:837-846. |
[8] | MATSUKI Y, UEDA K, IDEHARA T, et al. Application of continuously frequency-tunable 0.4 THz gyrotron to dynamic nuclear polarization for 600 MHz Solid-State NMR[J]. J Infrared Milli Terahz Waves, 2012, 33:745-755. |
[9] | BARNES A B, NANNI E A, HERZFELD J, et al. A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization[J]. J Magnetic Resonance, 2012, 221:147-153. |
[10] | LIU P K, BORIE E, KARTIKEYAN M V. Design of a 24 GHz, 25-50 kW technology gyrotron operating at the second harmonic[J]. Int J Infrared and Millimeter Waves, 2000, 21:1917-1943. |
[11] | LIU S G, YUAN X S, LIU D W, et al. The coaxial gyrotron with two electron beams. Ⅱ. dual frequency operation[J]. Phys Plasmas, 2007, 14:103114. |
[12] | RZESNICKI T, PIOSCZYK B, KERN S, et al. 2.2-MW record power of the 170-GHz European preprototype coaxial-cavity gyrotron for ITER[J]. IEEE Trans Plasma Sci, 2010, 38:1141-1149. |
[13] | BRATMAN V L, BOGDASHOV A A, DENISOV G G, et al. Gyrotron development for high power THz technologies at IAP RAS[J]. J Infrared Milli Terahz Waves, 2012, 33:715-723. |
[14] | JAWLA S, NI Q Z, BARNES A, et al. Continuously tunable 250 GHz gyrotron with a double disk window for DNP-NMRSpectroscopy[J]. J Infrared Milli Terahz Waves, 2013, 34:42-52. |
[15] | BAJAJ V S, HORNSTEIN M K, KREISCHER K E, et al. 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR[J]. Magnetic Resonance, 2007, 189:251-279. |
[16] | KUMAR N, SINGH U, KUMAR A, et al. Design of 95 GHz, 100 kW gyrotron for active denial system application[J]. Vacuum, 2014, 99:99-106. |