全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于CNN多层特征和ELM的交通标志识别
Traffic Sign Recognition Method Based on Multi-layer Feature CNN and Extreme Learning Machine

DOI: 10.3969/j.issn.1001-0548.2018.03.004

Keywords: 极限学习机,多层特征,多尺度池化,交通标志识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统神经网络仅利用端层特征进行分类导致特征不全面,以及交通标志识别中计算量大、时间长等问题,提出基于多层特征表达和极限学习机的交通标志识别方法。利用CNN网络提取多层交通标志特征图;采用多尺度池化操作,将提取出的各层特征向量联合形成一个具有多尺度多属性特征的交通标志特征向量;使用极限学习机分类器准确快速地实现交通标志的识别。实验结果表明,该方法能有效地提高交通标志识别的准确率,且具有较好的泛化能力和实时性。

References

[1]  ZHU Y, WANG X, YAO C, et al. Traffic sign classification using two-layer image representation[C]//2013 IEEE International Conference on Image Processing. Melbourne:IEEE, 2013:3755-3759.
[2]  MALDONADO-BASCON S, LAFUENTE-ARROYO S, GIL-JIMENEZ P, et al. Road-sign detection and recognition based on support vector machines[J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(2):264-278.
[3]  CIRE?AN D, MEIER U, MASCI J, et al. Multi-column deep neural network for traffic sign classification[J]. Neural Networks, 2012, 32:333-338.
[4]  HUANG G, ZHU Q, SIEW C. Extreme learning machine:Theory and applications[J]. Neurocomputing, 2006, 70(1):489-501.
[5]  GONG Y, WANG L, GUO R, et al. Multi-scale orderless pooling of deep convolutional activation features[C]//13th European Conference on Computer Vision. Zurich:Springer, 2014:392-407.
[6]  HUANG G, ZHOU X, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(2):513-529.
[7]  STALLKAMP J, SCHLIPSING M, SALMEN J, et al. The German traffic sign recognition benchmark:a multi-class classification competition[C]//The 2011 International Joint Conference on Neural Networks. San Jose, USA:IEEE, 2011:1453-1460.
[8]  MOGELMOSE A, TRIVEDI M M, MOESLUND T B. Vision-based traffic sign detection and analysis for intelligent driver assistance systems:Perspectives and survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4):1484-1497.
[9]  HUANG Z, YU Y, GU J, et al. An efficient method for traffic sign recognition based on extreme learning machine[J]. IEEE Transactions on Cybernetics, 2017, 47(4):920-933.
[10]  HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//13th European Conference on Computer Vision. Zurich:Springer, 2014:346-361.
[11]  GUDIGAR A, CHOKKADI S, RAGHAVENDRA U. A review on automatic detection and recognition of traffic sign[J]. Multimedia Tools and Applications, 2016, 75(1):333-364.
[12]  WANG G, REN G, WU Z, et al. A hierarchical method for traffic sign classification with support vector machines[C]//The 2013 International Joint Conference on Neural Networks. Dallas, USA:IEEE, 2013:1-6.
[13]  刘占文, 赵祥模, 李强, 等. 基于图模型与卷积神经网络的交通标志识别方法[J]. 交通运输工程学报, 2016, 5:122-131. LIU Zhan-wen, ZHAO Xiang-mo, LI Qiang, et al. Traffic sign recognition method based on graphical model and convolutional neural network[J]. Journal of Traffic and Transportation Engineering, 2016, 5:122-131.
[14]  ZENG Y, XU X, FANG Y, et al. Traffic sign recognition using deep convolutional networks and extreme learning machine[C]//5th International Conference on Intelligent Science and Big Data Engineering. Suzhou:Springer, 2015:272-280.
[15]  ZEILER M, FERGUS R. Visualizing and understanding convolutional networks[C]//13th European Conference on Computer Vision. Zurich:Springer, 2014:818-833.
[16]  XIE Y, LIU L, LI C, et al. Unifying visual saliency with HOG feature learning for traffic sign detection[C]//2009 IEEE Intelligent Vehicles Symposium. Xi'an:IEEE, 2009:24-29.
[17]  LI S, JIANG H, PANG W. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading[J]. Computers in Biology and Medicine, 2017, 84:156-167.
[18]  MATHIAS M, TIMOFTE R, BENENSON R, et al. Traffic sign recognition-How far are we from the solution?[C]//The 2013 International Joint Conference on Neural Networks. Dallas, USA:IEEE, 2013:1-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133