全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于耗电分析的Android平台恶意软件检测
Android Malware Detection Based on Power Consumption Analysis

DOI: 10.3969/j.issn.1001-0548.2016.06.018

Keywords: 频谱倒谱系数,高斯混合模型,移动终端,电量消耗

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文提出一种基于电量分析的恶意软件检测方法。首先获取移动终端的耗电状态并利用Mel频谱倒谱系数(MFCC)构建高斯混合模型(GMM)。然后采用GMM模型对电量消耗状态进行分析,进而通过对应用软件的分类处理识别恶意软件。实验证明应用软件的功能与电量消耗关系密切,表明基于软件的电量消耗信息分析可以较准确地检测出移动终端的恶意应用。

References

[1]  ZHANG L, TIWANA B, QIAN Z, et al. Accurate online power estimation and automatic battery behavior based power model generation for smartphones[C]//Proceedings of the IEEE IHardware/Software Codesign and System Synthesis. New Jersey, USA:IEEE, 2010:105-114.
[2]  CURTI M, MERLO A, MIGLIARDI M, et al. Towards energy-aware intrusion detection systems on mobile devices[C]//Proceedings of the 2013 International Conference on High Performance Computing and Simulation. New Jersey, USA:IEEE, 2013:289-296.
[3]  JACOBY G, MARCHANY R, DAVIS N. Battery-based intrusion detection a first line of defense[C]//Proceedings of the 5th Annual IEEE SMC on Information Assurance Workshop. New Jersey, USA:IEEE, 2004:272-279.
[4]  REYNOLDS D, QUATIERI T, DUNN R. Speaker verification using adapted gaussian mixture models[J]. Digital Signal Processing, 2010, 10(1-3):19-41
[5]  KUMAR S G, PRASAD R K, RAO M, et al. Speaker recognition using GMM[J]. International Journal of Engineering Science and Technology, 2010, 2(6):2428-2436.
[6]  CHRISTLEIG V, BERNECKER D, HONIG F, et al. Writer identification and verification using GMM supervectors[C]//Proceedings of Winter Conference on Applications of Computer Vision. New Jersey, USA:IEEE, 2014:998-1005.
[7]  JU Z, WANG Y, ZENG W, et al. A modified EM algorithm for hand gesture segmentation in RGB-D data[C]//Proceedings of the 2014 International Conference on Fuzzy Systems. New Jersey, USA:IEEE, 2014:1736-1742.
[8]  F-Secure Labs. Mobile threat report Q12014[R]. Helsinki, Finland:F-Secure Corporation, 2014.
[9]  吕晓庆. Android软件动态行为监测系统的设计和实现[D]. 北京:北京邮电大学, 2013. LV Xiao-qing. Design and implementation of malware detecting system based on android platform[D]. Beijing:Beijing University of Posts and Telecommunications, 2013.
[10]  BUENNEMEYER T, NELSON T, CLAGETT L, et al. Mobile device profiling and intrusion detection using smart batteries[C]//Proceedings of the 41st Annual International Conference on System Sciences. New Jersey, USA:IEEE, 2008:296.
[11]  KIM H, SMITH J, SHIN K. G. Detecting energy-greedy anomalies and mobile malware variants[C]//Proceeding of the 6th International Conference On Mobile Systems, Applications and Services. New York:ACM, 2008:239-252.
[12]  HOFFMA J, NEUMANN S, HOLZ T. Mobile malware detection based on energy fingerprints-a dead end[C]//Lecture Notes in Computer Science.[S.l.]:Springer, 2013, 8145:348-368.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133