全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于低尺度词袋模型的图像快速分类方法
Efficient Method for Image Classification Based on Low-Scale Bag of Word Model

DOI: 10.3969/j.issn.1001-0548.2016.06.021

Keywords: 词袋模型,计算机视觉,图像分类,尺度不变特征转换,小波变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种新的框架用于改进传统词袋模型效率较低的问题。该方法建立在通过小波变换获取的低尺度图像表示上,利用在低尺度图像上提取单尺度的SIFT特征,建立低尺度视觉词典。由于大幅度减少了图像初始特征维数,该方法可以快速建立视觉词典,并且有效地降低后续图像分类所花费的时间。通过对Caltech101数据集全部8 677张图像的分类测试显示,该方法可以在保证分类性能的同时,有效地提升基于传统词袋模型的图像分类效率。实验结果表明,该方法可以全面提升金字塔匹配的词袋模型分类性能和分类效率,普遍用于传统词袋模型及其衍生方法。

References

[1]  FEI-FEI L, PERONA P. A bayesian hierarchical model for learning natural scene categories[C]//Proceedings of the Computer Vision and Pattern Recognition. San Diego, CA USA:IEEE Computer Society, 2005:524-531.
[2]  LOWE D G. Object recognition from local scale-invariant features[C]//Seventh IEEE International Conference on Proceedings of the Computer Vision. Fort Collins, Colorado, USA:IEEE Computer Society, 1999, 2:1150-1157.
[3]  LOWE D. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
[4]  JIANCHAO Y, KAI Y, YIHONG G, et al. Linear spatial pyramid matching using sparse coding for image classification[C]//IEEE Conference on Proceedings of the Computer Vision and Pattern Recognition. Miami, Florida, USA:IEEE Computer Society, 2009:1794-1801.
[5]  JINJUN W, JIANCHAO Y, KAI Y, et al. Locality-constrained linear coding for image classification[C]//IEEE Conference on Proceedings of the Computer Vision and Pattern Recognition. San Francisco, CA, USA:IEEE Computer Society, 2010:3360-3367.
[6]  LEI W. Toward a discriminative codebook:Codeword selection across multi-resolution[C]//IEEE Conference on Proceedings of the Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA:IEEE Computer Society, 2007:1-8.
[7]  FEICHTENHOFER C, PINZ A, WILDES R P. Bags of spacetime energies for dynamic scene recognition[C]//IEEE Conference on Proceedings of the Computer Vision and Pattern Recognition. Columbus, OH, USA:IEEE Computer Society, 2014:2681-2688.
[8]  SADEK I, SIDIB D, MERIAUDEAU F. Automatic discrimination of color retinal images using the bag of words approach[C]//Proc SPIE 9414, Medical Imaging 2015. Orlando, USA:SPIE, 2015:94141J-8.
[9]  CONG Y, WANG S, LIU J, et al. Deep sparse feature selection for computer aided endoscopy diagnosis[J]. Pattern Recognition, 2015, 48(3):907-917.
[10]  SHEN L, LIN J, WU S, et al. HEp-2 image classification using intensity order pooling based features and bag of words[J]. Pattern Recognition, 2014, 47(7):2419-2427.
[11]  BROMURI S, ZUFFEREY D, HENNEBERT J, et al. Multi-label classification of chronically ill patients with bag of words and supervised dimensionality reduction algorithms[J]. Journal of Biomedical Informatics, 2014, 51:165-175.
[12]  JOACHIMS T. Text categorization with support vector machines:Learning with many relevant features[M]. Heidelberg, Berlin:Springer, 1998.
[13]  SIVIC J, ZISSERMAN A. Video google:a text retrieval approach to object matching in videos[C]//Ninth IEEE International Conference on Proceedings of the Computer Vision. Washington D C, USA:IEEE Computer Society, 2003.
[14]  FERGUS R, FEI-FEI L, PERONA P, et al. Learning object categories from Google's image search[C]//Tenth IEEE International Conference on Proceedings of the Computer Vision. Washington D C, USA:IEEE Computer Society, 2005:1816-1823.
[15]  SUDDERTH E B, TORRALBA A, FREEMAN W T, et al. Learning hierarchical models of scenes, objects, and parts[C]//Tenth IEEE International Conference on Proceedings of the Computer Vision. Washington D C, USA:IEEE Computer Society, 2005:1331-1338.
[16]  RAMESH B, XIANG C, LEE T H. Shape classification using invariant features and contextual information in the bag-of-words model[J]. Pattern Recognition, 2015, 48(3):894-906.
[17]  KHAN R, BARAT C, MUSELET D, et al. Spatial histograms of soft pairwise similar patches to improve the bag-of-visual-words model[J]. Computer Vision and Image Understanding, 2015, 132:102-112.
[18]  WANG C, HUANG K. How to use bag-of-words model better for image classification[J]. Image and Vision Computing, 2015, 38:65-74.
[19]  GANDHI A, ALAHARI K, JAWAHAR C V. Decomposing bag of words histograms[C]//IEEE International Conference on Computer Vision. Sydney, NSW, Australia:IEEE Computer Society, 2013:305-312.
[20]  KATO H, HARADA T. Image reconstruction from bag-of-visual-words[C]//IEEE Conference on Proceedings of the Computer Vision and Pattern Recognition. Columbus, OH, USA:IEEE Computer Society, 2014:955-962.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133