|
- 2017
认知MIMO系统中基于博弈论的干扰对齐算法研究
|
Abstract:
为消除用户间干扰,提高认知无线电多输入多输出(CR-MIMO)系统传输速率,给出一种基于博弈论的干扰对齐算法。该算法首先采用注水算法为主用户进行功率分配,同时设计次用户预编码使次用户信号落入主用户未分配功率的子信道。然后将次用户之间的多条干扰链路构成一个博弈群体进行求解,实现次用户之间的干扰对齐。此外,为最大化次用户传输速率,将次用户功率分配问题转换为布谷鸟鸟巢的选择问题,构造适应度函数,得到最优的功率分配方案。数值分析表明,该算法可以消除主次用户的干扰以及次用户之间的干扰,传输速率比最大信干噪比(Max-SINR)算法高2 b·s-1·Hz-2,同时,结合布谷鸟搜索算法进行功率分配后传输速率高于文献[13]。
[1] | Agency for Healthcare Research and Quality, Office for Civil Rights, HHS. Patient safety and quality improvement. Notice of proposed rulemaking[J]. Federal Register, 2008, 73(29):84-86. |
[2] | TSINOS C G, BERBERIDIS K. Blind opportunistic interference alignment in MIMO cognitive radio systems[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2013, 3(4):626-639. |
[3] | PERLAZA S M, DEBBAH M, LASAULCE S, et al. Opportunistic interference alignment in MIMO interference channels[C]//IEEE 19th International Symposium on.[S.l.]:IEEE, 2008:1-5. |
[4] | REZAEI F, TADAION A. Interference alignment in cognitive radio networks[J]. Communications, IET, 2014, 8(10):1769-1777. |
[5] | ZHOU H, RATNARAJAH T, LIANG Y C. On secondary network interference alignment in cognitive radio[C]//2011 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN),[S.l.]:IEEE, 2011:637-641. |
[6] | AMIR M, El-KEYI A, NAFIE M. Constrained interference alignment and the spatial degrees of freedom of MIMO cognitive networks[J]. IEEE Transactions on Information Theory, 2011, 57(5):2994-3004. |
[7] | GULER B, YENER A. Selective interference alignment for MIMO cognitive femtocell networks[J]. IEEE Journal on Selected Areas in Communication, 2014, 32(3):439-450. |
[8] | FADLALLAH Y, AMIS K, A?SSA-El-BEY A, et al. Interference alignment for a multi-user SISO interference channel[J]. Eurasip Journal on Wireless Communications & Networking, 2014(1):1-13. |
[9] | CASTANHEIRA D, SILVA A, GAMEIRO A. Set optimization for efficient interference alignment in heterogeneous networks[J]. IEEE Transactions on Wireless Communication, 2014, 13(10):5648-5660. |
[10] | PERLAZA S M, DEBBAH M, LASAULCE S, et al. Opportunistic interference alignment in MIMO interference channels[C]//Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communication.[S.l.]:IEEE, 2008:1-5. |
[11] | NO E D. 03-322, notice of proposed rule making and order[J]. Federal Communications Commission, Adopted, 2003, 59(26):84-86. |
[12] | 章扬, 周正, 石磊, 等. 基于严格势博弈的干扰对齐[J]. 北京邮电大学学报, 2013, 36(2):50-54. ZHANG Yang, ZHOU Zheng, SHI Lei, et al. Interference alignment based on exact potential game[J]. Journal of Beijing University of Posts and Telecommunication, 2013, 36(2):50-54. |
[13] | BANERJEE S, CHATTOPADHYAY S. A novel asymmetric turbo code using cuckoo search algorithm[C]//India Conference (INDICON), 2014 Annual.[S.l.]:IEEE, 2014. |
[14] | QU T, ZHAO N, YIN H, et al. Interference alignment for overlay cognitive radio based on game theory[C]//2012 IEEE 14th International Conference on Communication Technology (ICCT).[S.l.]:IEEE, 2012:67-72. |
[15] | ZHAO F, WANG W, CHEN H, et al. Interference alignment and game-theoretic power allocation in MIMO heterogeneous sensor networks communications[J]. Signal Processing, 2016, 126(c):173-179. |
[16] | XU Y, MAO S. Stackelberg game for cognitive radio networks with MIMO and distributed interference alignment[J]. IEEE Transactions on Vehicular Technology, 2013, 63(2):879-892. |
[17] | KOO B, PARK D. Interference alignment with cooperative primary receiver in cognitive networks[J]. IEEE Communications Letters, 2012, 16(7):1072-1075. |
[18] | REZAEI F, TADAION A. Interference alignment in cognitive radio networks[J]. Iet Communications, 2014, 8(10):1769-1777. |
[19] | MONDERER D, SHAPLEY L S. Potential games[J]. Games and Economic Behavior, 1996, 14(1):124-143. |