|
- 2017
基于LDPC码的安全可靠通信方法研究
|
Abstract:
LDPC码是一类由校验矩阵确定的线性分组码,具有逼近香农限的纠错能力。该文基于纠错码的对称密码体制以及性能等价编码矩阵提出了一类基于LDPC码的安全通信方法,该方法在几乎不改变通信可靠性的情况下,极大地提高了系统的抗截获能力。编码矩阵可以使线性分组码的生成矩阵或校验矩阵。该文通过构造大量性能等价的编码矩阵,以及通信时收发双方同时随机改变编码矩阵的方法来提高通信系统的抗截获能力。另外,由于这些性能等价的编码矩阵产生的LDPC码不仅具有相同的编码参数和可靠性,而且具有非常强的纠错能力,因此该方案是一种安全可靠的一体化通信方法。
[1] | SHOOSHTARI M K, AHMADIAN M, PAYANDEH A. Improving the security of McEliece-like public key cryptosystem based on LDPC codes[C]//11th International Conference on Advanced Communication Technology. PhoenixPark, Korea:IEEE, 2009:1050-1053. |
[2] | MACKAY D J C, NEAL R M. Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1996, 18(32):1645-1646. |
[3] | 包昕, 周磊砢, 何可, 等. LDPC码稀疏校验矩阵的重建方法[J]. 电子科技大学学报, 2016, 45(2):191-196. BAO Xin, ZHOU Lei-ke, HE Ke, et al. A method of restructuring LDPC parity-check matrix[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(2):191-196. |
[4] | 包昕, 周磊砢, 何可, 等. 误码条件下的LDPC码盲识别算法[J]. 西安交通大学学报, 2015, 12(49):53-58. BAO Xin, ZHOU Lei-ke, HE Ke, et al. A recognition algorithm for LDPC codes of blind in a noisy environment[J]. Journal of Xi'an Jiaotong University, 2015, 12(49):53-58. |
[5] | 刘海达, 李静, 彭华. 利用最大偏差比的LDPC码识别算法[J]. 信号处理, 2014, 8(30):908-913. LIU Hai-da, LI Jing, PENG Hua. Identification algorithm for LDPC codes using maximum deviation ratio[J]. Journal of Signal Processing, 2014, 8(30):908-913. |
[6] | BERLEKAMP E R, MCELIECE R J, VAN TILBURG H C A. On the inherent intractability of certain coding problems[J]. IEEE Transactions on Information Theory, 1978, 24(3):384-386. |
[7] | MCELIECE R J. A public-key cryptosystem based on algebraic coding theory[J]. DSN Progress Report, 1978, 1(9):114-116. |
[8] | 王新梅. M公钥的推广及通过有扰信道时的性能分析[J]. 电子学报, 1986, 1(4):86-92. WANG Xin-mei. Generalization of M public key system and analysis of its performance on noisy[J]. Acta Electronica Sinica, 1986, 1(4):84-91. |
[9] | RAO T N R. Joint encryption and error correction schemes[C]//Proceedings of the 11th Annual International Symposium on Computer Architecture. New York, USA:ACM Sigarch Computer Architecture News, 1984, 12(3):240-241. |
[10] | RICHARDSON T J, RUDIGER L. Urbanke, effcient encoding of low-density parity check codes[J]. IEEE Trans Inf Theory, 2001, 47(2):638-656. |
[11] | HU X Y, ELEFTHERIOU E. Regular and irregular progressive edge-growth tanner graphs[J]. IEEE Transactions on Information Theory, 2005, 1(51):386-398. |
[12] | LEI C, IVANA D, JUN X, et al. Construction of quasi-cyclic ldpc codes based on the minimum weight codewords of reed-solomon codes[J]. ISIT, 2004, 1(1):239. |
[13] | MARCO B. QC-LDPC code-based cryptography[M].[S.l.]:Springer, 2014:23-64. |
[14] | 蒋定顺, 金力军. 高速跳频通信系统同步技术研究[J].电子科技大学学报, 2005, 34(1):48-52. JIANG Ding-shun, JIN Li-jun. Research on synchronization technique for a high-speed FH communication system[J]. Journal of University of Electronic Science and Technology of China, 2005, 34(1):48-52. |