|
- 2018
基于零相位频率的晶体谐振器等效电参数测量方法
|
Abstract:
晶体谐振器等效参数的测量方法很多,工程上通常利用谐振频率和负载谐振频率来求解等效参数。该文推导了谐振频率、负载谐振频率、反谐振频率和负载反谐振频率的精确形式,并以此为基础求解晶体谐振器的等效参数。ADS仿真实验表明,该方法在理论上正确。利用相位-频率曲线在谐振点与反谐振点的导数构建非线性方程组,解决实测实验中的频率随机游动问题。采用二维搜索法求解非线性方程组。实测结果表明,该方法测量的等效参数和供应商提供的等效参数基本一致。该方法没有采用近似计算,不仅适用于高Q值晶体谐振器,也适用于低Q值谐振器,因此,该方法也能应用于传感器领域,如温度传感器、石英晶体微天平等。
[1] | ZHOU W, WANG B, GAO J N, et al. AMCXO and its test system[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2004, 51(9):1050-1053. |
[2] | LIU B Q, HAN T, ZHANG C R. Error correction method for passive and wireless resonant SAW temperature sensor[J]. IEEE Sensors Journal, 2015, 15(6):3608-3614. |
[3] | YAO Y, XUE Y J. Influence of the oxygen content on the humidity sensing properties of functionalized graphene films based on bulk acoustic wave humidity sensors[J]. Sensors and Actuators B-Chemical, 2016, 222:755-762. |
[4] | YAO Y, XUE Y J. Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film[J]. Sensors and Actuators B-Chemical, 2015, 211:52-58. |
[5] | YAO Y, CHEN X D, MA W Y, et al. Quartz crystal microbalance humidity sensors based on nanodiamond sensing films[J]. IEEE Transactions on Nanotechnology, 2014, 13(2):386-393. |
[6] | YAO Y, CHEN X D, LI X Y, et al. Investigation of the stability of QCM humidity sensor using graphene oxide as sensing films[J]. Sensors and Actuators B-Chemical, 2014, 191:779-783. |
[7] | IEC. Measurement of quartz crystal unit parameters by zero phase technique in a pi-network. Part 2:Phase offset method for measurement of motional capacitance of quartz crystal units:IEC60444-2[S]. London:International Electrotechnical Commission, 1980. |
[8] | 董政洁, 刘桂礼, 王艳林, 等. 基于S参数传输法的石英晶体静电容测量[J]. 仪器仪表学报, 2011, 32(4):892-896. DONG Zheng-jie, LIU Gui-li, WANG Yan-lin, et al. Quartz crystal static capacitance measurement based on S parameter transmission method[J]. Chinese Journal of Scientific Instrument, 2011, 32(4):892-896. |
[9] | 刘解华, 张其善, 杨军, 等. 高频高精度石英晶体元件电参数测量技术研究[J]. 仪器仪表学报, 2006, 27(5):447-450. LIU Xie-hua, ZHANG Qi-shan, YANG Jun, et al. Research on measurement with high frequency and precision for electric parameters of Quartz crystal units[J]. Chinese Journal of Scientific Instrument, 2006, 27(5):447-450. |
[10] | 吴兵. 石英晶体微天平电学参数获取及在物理吸附上的应用[D]. 合肥:中国科技大学物理电子学, 2008. WU Bing. Acquirement of eleetrieal parameters of quartz crystal microbalance and its application in physisorption[D]. Hefei:School of physics, University of Science and Technology of China, 2008. |
[11] | LIU D, HUANG X H, HU J G, et al. Measurement of quartz crystal unit parameters based on the precise derivation of zero phase frequency[J]. Electronics Letters, 2017, 53(3):142-144. |
[12] | BOTTOM V E. Introduce to crystal unite design[M]. New York:Van Nostrand Reinhold Company, 1987. |
[13] | 中华人民共和国信息产业部. 石英晶体元件·电子元器件质量评定体系规范·第1部分:总规范:GB/T 12273-1996[S]. 北京:电子工业部标准化研究所, 1996. MⅡT. Quartz crystal units-a specification in the quality assessment system for electronic components, part 1:Generic specification:GB/T 12273-1996[S]. Beijing:China Electronics Standardization Institute, 1996. |
[14] | HUANG X H, LIU D, WANG Y, et al. 100 MHz low-phase-noise microprocessor temperature-compensated crystal oscillator[J]. IEEE Transactions on Circuits and Systems Ⅱ-Express Briefs, 2015, 62(7):636-640. |
[15] | HUANG X H, LIU D, WANG Y, et al. Precise derivation for the equivalent circuit parameters of a crystal resonator with series capacitor[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2012, 59(6):1316-1317. |
[16] | HUANG X H, CHEN P P, FU W, et al. Prediction, simulation, and verification of the phase noise in 80 MHz low-phase-noise crystal oscillators[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2015, 62(9):1599-1604. |