全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一种面向动态网络的社团检测与演化分析方法
New Community Detection and Evolution Analysis Method for Dynamic Networks

DOI: 10.3969/j.issn.1001-0548.2018.01.018

Keywords: 社团检测,社团生存周期,动态网络,演化分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对制约动态网络演化分析方法发展的社团演变模式挖掘问题,设计了基于指向性变异策略和变邻域搜索算法的静态社团检测算法与基于匹配度和社团生存周期的社团演化分析算法,并采用在时刻上运行静态社团检测算法、在时序上运行社团演化分析算法的策略,提出了一种面向动态网络的社团检测与演化分析方法。并用Zachary空手道俱乐部网络和Power网络验证了该方法的可行性和有效性。

References

[1]  高琳, 杨建业, 覃桂敏. 动态网络模式挖掘方法及其应用[J]. 软件学报, 2013, 24(9):2042-2061. GAO Lin, YANG Jian-ye, QIN Gui-min. Methods for pattern mining in dynamic networks and applications[J]. Journal of Software, 2013, 24(9):2042-2061.
[2]  刘瑶, 王瑞锦, 刘峤. 动态社会网络的社团结构发现与分析[J]. 电子科技大学学报, 2014, 43(5):725-729. LIU Yao, WANG Rui-jin, LIU Qiao, et al. Community detecting and analyzing in dynamic social networks[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(5):725-729.
[3]  CHAKRABARTI D, KUMAR R, TOMKINS A. Evolutionary clustering[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia:ACM, 2006.
[4]  TANTIPATHANANANDH C, BERGER-WOLF T, KEMPE D. A framework for community identification in dynamic social networks[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose:ACM, 2007.
[5]  LIN Y R, CHI Y, ZHU S, et al. Facetnet:a framework for analyzing communities and their evolutions in dynamic networks[C]//Proceedings of the 17th International Conference on World Wide Web. Beijing:ACM, 2008.
[6]  KIM M S, HAN J. A particle-and-density based evolutionary clustering method for dynamic networks[J]. Proceedings of the VLDB Endowment, 2009, 2(1):622-633.
[7]  吴斌, 王柏, 杨胜琦. 基于事件的社会网络演化分析框架[J]. 软件学报, 2011, 22(7):1488-1502. WU Bin, WANG Bai, YANG Sheng-qi. Framework for tracking the event-based evolution in social networks[J]. Journal of Software, 2011, 22(7):1488-1502.
[8]  杨淑莹, 张桦. 群体智能与仿生计算-Matlab技术实现[M]. 北京:电子工业出版社, 2012. YANG Shu-ying, ZHANG Hua. Swarm intelligence and bionic calculation-technical implementation for Matlab[M]. Beijing:Publish House of Electronic Industry, 2012.
[9]  NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6):066133.
[10]  BLONBEL V D, GUILLAUME J, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics Theory & Experiment, 2008(10):155-168.
[11]  王柏. 社会网络中社团发现及网络演化分析[D]. 北京:北京邮电大学, 2014. WANG Bai. Research on community detecting and evolution analysis in social network[D]. Beijing:Beijing University of Posts and Telecommunications, 2014.
[12]  FORTUNATO S. Community detection in graphs[J]. Physics Report, 2010, 486(3-5):75-174.
[13]  SPILIOPOULOU M. Evolution in social networks:a survey[J]. Social Network Data Analytics, 2011, 978(3):149-175.
[14]  FENG Z, XU X. A novel similarity-based modularity function for graph partitioning[J]. Data Warehousing and Knowledge Discovery, 2007(46-54):385-396.
[15]  JARBOUI B, DERBEL H. Variable neighborhood search for location routing[J]. Computers and Operations Research, 2013, 40:47-57.
[16]  PALLA G, DENENYI I. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043):814-818.
[17]  BERGER W T Y, SAIA J. A framework for analysis of dynamic social networks[C]//Proceedings of the 12th ACM SIGKDD International Conference on Konwledge Discovery and Data Mining. USA:ACM, 2006:523-528.
[18]  邓琨, 张健沛, 杨静. 利用改进遗传算法进行复杂网络社团发现[J]. 哈尔滨工程大学学报, 2013, 34(11):1439-1444. DENG Kun, ZHANG Jian-pei, YANG Jing. Community detection in complex networks using an improved genetic algorithm[J]. Journal of Harbin Engineering University, 2013, 34(11):1439-1444.
[19]  CHEN Y Y, CHENG C Y. A hybrid approach based on the variable neighborhood search and particle swarm optimization for parallel machine scheduling problems-A case study for solar cell industry[J]. Int J Production Economics, 2013, 141:66-78.
[20]  PALLA G, BARABASI A L, VICSEK T. Quantifying social group evolution[J]. Nature, 2007, 446(7136):664-667.
[21]  GREENE D, DOYLE D, CUNNINGHAM P. Tracking the evolution of communities in dynamic social networks[C]//Proceedings of the Int'l Conf on Advances in Social Networks Analysis and Mining. Denmark:ASONAM, 2010:176-183.
[22]  GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. National Academy of Science, 2002, 9(12):7821-7826.
[23]  FRASER H B. Modularity and evolutionary constraint on proteins[J]. Nature Genetics, 2005, 37(4):351-352.
[24]  TASGIN M, HERDAGDELEN A, BINGOL H. Community detection in complex networks using genetic algorithms[EB/OL]. (2012-12-15). http://arxiv.org/abs/0711.0491.
[25]  PIZZUTI C. GA-NET:a genetic algorithm for community detection in social networks[C]//Proceedings of the 10th International Conference on Parallel Problem Solving from Nature. Dortmund:Springer, 2008:1081-1090.
[26]  GONG M, FU Bao, JIAO L, et al. Memetic:Algorithm for community detection in networks[J]. Physical Review E, 2011, 84(5):56-101.
[27]  范成礼, 邢清华, 范海雄. 带审敛因子的变邻域粒子群算法[J]. 控制与决策, 2014, 29(4):696-700. FAN Cheng-li, XING Qing-hua, FAN Hai-xiong. The particle swarm optimization and variable neighborhood search algorithm with convergence criterions[J]. Control and Decision, 2014, 29(4):696-700.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133