|
- 2016
电子注激励石墨烯表面等离子体激元的研究
|
Abstract:
对垂直与平行运动电子注激励石墨烯表面等离子体激元进行了详细分析与对比。理论分析与数值计算的结果表明,电子注垂直激励时,石墨烯表面等离子体激元包含丰富的频率分量,沿传播方向衰减,并伴随有度越辐射;平行激励时,其工作频率可通过调节电子注能量或石墨烯化学势进行调谐,且沿传播方向没有衰减,没有渡越辐射。优化电子注能量与石墨烯化学势等参数可使电子注激励的石墨烯表面等离子体激元具有最大功率。电流密度大于500 A/cm2的直流电子注可与石墨烯表面等离子体激元发生注波互作用,从而对其进行持续地激励并放大。
[1] | HOMOLA J, YEE S S, GAUGLITZ G. Surface plasmon resonance sensors: Review[J]. Sens Actuators B Chem, 1999, 54(12): 3-15. |
[2] | HOMOLA J. Present and future of surface plasmon resonance biosensors[J]. Anal Bioanal Chem, 2003, 377(3): 528-539. |
[3] | ZHOU W, LEE J, NANDA J, et al. Atomically localized plasmon enhancement in monolayer graphene[J]. Nat Nanotechnol, 2012, 7(3): 161. |
[4] | TETSUYUKI O. Efficiency and angular distribution of graphene-plasmon excitation by electron beam[J]. Journal of the Physical Society of Japan, 2014, 83(5): 054705. |
[5] | ABAJO F J. Multiple excitation of confined graphene plasmons by single free electrons[J]. ACSNANO, 2014, 7(12): 11409-11419. |
[6] | YANG K, AREZOOMANDAN S, RODRIGUEZ B S. The linear and non-linear THz properties of graphene[J]. Terahertz Sci Technol, 2013, 6(4): 223. |
[7] | HANSON W G. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. J Appl Phys, 2008, 103(6): 064302. |
[8] | POHL D W. Near-field optics and the surface plasmon polariton[M]. Berlin, Heidelberg: Springer-Verlag Press, 2001. |
[9] | LIU S, ZHANG P, LIU W, et al. Surface polariton Cherenkov light radiation source[J]. Phys Rev Lett, 2012, 109(15): 153902. |
[10] | AMES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830. |
[11] | LIU S, ZHANG C, HU M, et al. Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam[J]. Appl Phys Lett, 2014, 104(20): 201104. |
[12] | GRIGORENKO A, POLINI M, NOVOSELOV K. Graphene plasmonics[J]. Nat Photonics, 2012, 6(11): 749. |
[13] | ZHAN T, HAN D, HU X, et al. Tunable terahertz radiation from graphene induced by moving electrons[J]. Phys Rev B, 2014, 89(24): 245434. |
[14] | GAO W, SHI G, JIN Z, et al. Excitation and active control of propagating surface plasmon polaritons in graphene[J]. Nano Lett, 2013, 13(8): 3698. |
[15] | BLUDOV Y V, FERREIRA A, PERES N M R, et al. A primer on surface plasmon-polaritons in graphene[J]. International Journal of Modern Physics B, 2013, 27(10): 1341001. |
[16] | RYZHII M, RYZHII V. Injection and population inversion in electrically induced p-n junction in graphene with split gates[J]. Jpn J Appl Phys Part 2, 2007, 46: L151-L153. |
[17] | WANG B, ZHANG X, YUAN X, et al. Optical coupling of surface plasmons between graphene sheets[J]. Appl Phys Lett, 2012, 100(13): 131111. |
[18] | BASS F G, YAKOVENKO V M. Theory of radiation from a charge passing through an electrically inhomogeneous medium[J]. Sov Phys Usp, 1965, 8(3): 420-444. |
[19] | 刘盛纲. 相对论电子学[M]. 北京:科学出版社, 1987. LIU Sheng-gang. Relativistic electronics[M]. Beijing: Science Press, 1987. |
[20] | GONG S, HU M, ZHONG R, et al. Electron beam excitation of surface Plasmon polaritons[J]. Optics Express, 2014, 22(16): 19252. |
[21] | HU M, ZHANG Y, YANG Y, et al. Terahertz radiation from interaction between an electron beam and a planar surface plasmon structure[J]. Chin Phys B, 2009, 18(9): 3877-3882. |
[22] | RAETHE H. Surface plasmons on smooth and rough surfaces and on gratings[M]. Berlin, Heidelberg: Springer-Verlag Press, 1988. |
[23] | GINZBRUG V L, TSYTOVICH V N. Transition radiation and transition scattering[M]. New York, USA: Adam Hilger Press, 1990. |
[24] | FORD G W, WEBER W H. Electromagnetic interactions of molecules with metal[J]. Phys Rep, 1984, 113(4): 195-287. |
[25] | 刘盛纲. 微波电子学导论[M]. 北京: 国防工业出版社, 1985. LIU Sheng-gang. Introduction to microwave electronics[M]. Beijing: National Defense Industry Press, 1985. |