|
- 2016
屏蔽室收发天线分离全双工自干扰信道测量与建模
|
Abstract:
针对屏蔽室环境收发分离全双工自干扰信道特性,该文采用基于网络分析仪的信道测量平台,对屏蔽室环境下2.6 GHz收发天线分离全双工自干扰信道进行研究,得到了路径传输损耗,均方根时延扩展与莱斯K因子的统计模型。结果表明:自干扰信道路径损耗随距离增加呈对数衰减;均方根时延扩展服从对数正态分布,并随着天线间距的增加而增加;莱斯K因子服从正态分布,并随着天线间距的增加逐渐降低,莱斯分布的特征逐渐降低。
[1] | BHARADIA D, MCMILIN E, KATTI S. Full duplex radios[C]//Proceedings of the ACM SIGCOMM. HongKong, China:ACM, 2013. |
[2] | BHARADIA D, KATTI S. Full duplex MIMO radios[C]//Proc USENIX, NSDI.[S.l.]:[s.n.], 2014. |
[3] | 焦秉立, 马猛. 同频同时全双工技术浅析[J]. 电信网技术, 2013, 11(11):29-32. JIAO Bing-li, MA Meng. Full duplex technology[J]. Telecommunications Network Technology, 2013, 11(11):29-32. |
[4] | 徐强, 全欣. 同时同频全双工LTE射频自干扰抑制能力分析及实验验证[J]. 电子与信息学报, 2014, 36(03):662-668. XU Qiang, QUAN Xin. Analysis and experimental verification of rf self-interference cancelation for co-time co-frequency full-duplex LTE[J]. Journal of Electronics & Information Technology, 2014, 36(03):662-668. |
[5] | WU X Y, SHEN Y, TANG Y X. The power delay profile of the single-antenna full-duplex self-interference channel in indoor environments at 2.6 GHz[J]. Antennas and Wireless Propagation Letters, IEEE, 2014, 8(13):1561-1564. |
[6] | HONG S S, MEHLMAN J, KATTI S. Picasso:Flexible RF and spectrum slicing[C]//Proceedings of the ACM SIGCOMM. Helsinki:ACM, 2012. |
[7] | HUA Y, LIANG P, MA Y. A method for broad band full-duplex MIMO radio[J]. IEEE Signal Processing Letters, 2012, 19(12):793-796. |
[8] | WU X Y, SHEN Y, TANG Y X. Propagation characteristics of the full-duplex self-interference channel for the indoor environment at 2.6 GHz[C]//IEEE Antennas and Propagation Society International Symposium. Memphis:IEEE Press, 2014. |
[9] | DUARTE M, DICK C. Experiment-driven characterization of full-duplex wireless systems[J]. IEEE Journal on Wireless Communications, 2012, 11(12):4296-4307. |
[10] | 吴翔宇, 沈莹, 唐友喜. 室内环境下2.6 GHz同时同频全双工自干扰信道测量与建模[J]. 电子学报, 2015, 43(01):1-6. WU Xiang-yu, SHEN Ying, TANG You-xi. Measurement and modeling of co-time co-frequency full-duplex self-interference channel of indoor environment at 2.6 GHz[J]. Acta electronic Sinica, 2015, 43(01):1-6. |
[11] | VARELA M S, SANCHEZ M G. RMS delay and coherence bandwidth measurements in indoor radio channels in the UHF band[J]. IEEE Transactions on Vehicular Technology, 2001, 50(2):515-525. |
[12] | SANTELLA G, RESTUCCIA E. Analysis of frequency domain wide-band measurements of the indoor radio channel at 1, 5.5, 10 and 18 GHz[C]//The Key to Global Prosperity, Global Telecommunications Conference Communications. London, UK:IEEE Press, 1996. |
[13] | EMSLIE A G, LAGACE R L, STRONG P F. Theory of the propagation of UHF radio waves in coal mine tunnels[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(2):192-205. |
[14] | R&S. ZNB vector network analyzers user manual[M]. Germany:Rohde & Schwarz GmbH & Co, 2013. |
[15] | WANG Y, LU W. Propagation characteristics of the LTE indoor radio channel with persons at 2.6 GHz[J]. Antennas and Wireless Propagation Letters, IEEE, 2013, 12(1):991-994. |
[16] | RAPPAPORT T S. Wireless communications:Principles and practice[M]. Upper Saddle River, NJ:Prentice Hall PTR, 2002. |
[17] | KAYA A O, GREENSTEIN L J, TRAPPE W. Characterizing indoor wireless channels via ray tracing combined with stochastic modeling[J]. Wireless Communications, IEEE Transactions on, 2009, 8(8):4165-4175. |
[18] | KYOSTI P. IST-WINNER II D1.1.2:WINNER II channel models-part ii radio channel measurement and analysis results[EB/OL].[2014-10-22]. http://www.ist-winner.org. |