|
- 2018
基于近邻传播的限定簇数聚类方法研究
|
Abstract:
针对传统近邻传播聚类算法不能进行限定类簇数目的聚类缺陷,提出一种三阶段的改进聚类方法。该方法通过近邻传播聚类从数据集中获得中心代表点集合,利用K-means算法对中心代表点集合进行指定类簇数目的聚类进而获得初始训练集,结合改进的K最近邻算法实现数据的聚类分析。采用人工仿真数据及UCI数据集进行对比实验,实验结果分析表明,与近邻传播聚类算法和传统限定类簇数目的聚类算法相比,新聚类算法具有更好的聚类效果。
[1] | XU Rui, DONALD W. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3):645-678. |
[2] | 相洁, 赵冬琴. 改进谱聚类算法在MCI患者检测中的应用研究[J]. 通信学报, 2015, 36(4):27-34. XIANG Jie, ZHAO Dong-qin. Improved spectral clustering algorithm and its application in MCI detection[J]. Journal on Communications, 2015, 36(4):27-34. |
[3] | FUJITA A, TAKAHASHI D Y, PATRIOTA A G. A non-parametric method to estimate the number of clusters[J]. Computational Statistics & Data Analysis, 2014, 73(2):27-39. |
[4] | 周世兵, 徐振源, 唐旭清. 一种基于近邻传播算法的最佳聚类数确定方法[J]. 控制与决策, 2011, 26(8):1147-1152. ZHOU Shi-bing, XUN Zhen-yuan, TANG Xu-qing. Method for determining optimal number of cluster based on affinity propagation clustering[J]. Control and Decision, 26(8):1147-1152. |
[5] | SAGHABOZORGI S, SHIRKHORSHIDI A S, WAH T Y. Time-series clustering-a decade review[J]. Information Systems, 2015, 53(C):16-38. |
[6] | 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1):48-61. SUN Ji-gui, LIU Jie, ZHAO Lian-yu. Clustering algorithms research[J]. Journal of Software, 19(1):48-61. |
[7] | 周涛, 陆惠玲. 数据挖掘中聚类算法研究进展[J]. 计算机工程与应用, 2012, 48(12):100-111. ZHOU Tao, LU Hui-lin. Clustering algorithm research advances on data mining[J]. Computer Engineering and Applications, 2012, 48(12):100-111. |
[8] | BREND F J, DELBERT D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814):972-976. |
[9] | 李海林, 万校基, 林春培. 基于关键词重要性和近邻传播聚类的主题分析研究[J]. 情报学报, 2018, 37(5):533-542. LI Hai-lin, WAN Xiao-ji, LIN Chun-pei. Theme analysis based on keyword importance and affinity propagation clustering[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(5):533-542. |
[10] | ARZENO N M, VIKALO H. Semi-supervised affinity propagation with soft instance-level constraints[J]. IEEE Transactions on Pattern Analysis and Machine Itelligence, 2015, 37(5):1041-1052. |
[11] | 李海林, 魏苗. 自适应属性加权近邻传播聚类算法[J]. 电子科技大学学报, 2018, 47(2):247-255. LI Hai-lin, WEI Miao. Affinity propagation clustering algorithm based on adaptive feature weight[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(2):247-255. |
[12] | 张震, 汪斌强, 伊鹏, 等. 一种分层组合的半监督近邻传播聚类算法[J]. 电子与信息学报, 2013, 35(3):645-651. ZHANG Zhen, WANG Bing-qiang, YI Peng, et al. Semi-supervised affinity propagation clustering algorithm based on stratified combination[J]. Journal Of Electronics & Information Technology, 2013, 35(3):645-651. |
[13] | RAND W M. Objective criteria for the evaluation of clustering methods[J]. Publications of the American Statistical Association, 1971, 66(336):846-850. |
[14] | 陈黎飞, 姜青山, 王声瑞. 基于层次划分的最佳聚类数确定方法[J]. 软件学报, 2008, 9(1):62-72. CHEN Li-fei, JIANG Qing-shan, WANG Sheng-rui. A hierarchical method for determining the number of clusters[J]. Journal of Software, 2008, 9(1):62-72. |
[15] | HANG Wen-long, CHUANG Fu-lai, WANG Shi-tong. Transfer affinity propagation-based clustering[J]. Information Sciences, 2016, 34(8):337-356. |
[16] | ZHAO Xiu-li, XU Wei-xiang. An extended affinity propagation clustering method based on different data density types[J]. Computational Intelligence and Neuroscience, 2015, 1:1-12. |
[17] | 王开军, 张军英, 李丹, 等. 自适应仿射传播聚类[J]. 自动化学报, 2007, 33(12):1242-1246. WANG Kai-Jun, ZHANG Jun-ying, LI Dan, et al. Adaptive affinity propagation clustering[J]. Acta Automatica Sinica, 2007, 33(12):1242-1246. |
[18] | FOWLKES E B, MALLOWS C L. A method for comparing two hierarchical clusterings[J]. Publications of the American Statistical Association, 1983, 78(383):553-569. |
[19] | GAN Guo-jun, MICHAEL K. Subspace clustering using affinity propagation[J]. Pattern Recognition, 2015, 48(4):1455-1464. |
[20] | ZHANG Tao, WU Ren-biao. Affinity propagation clustering of measurements for multiple extended target tracking[J]. Sensors, 2015, 15(9):22646-22659. |