|
- 2016
电化学/过硫酸盐耦合体系降解水中有机药物卡马西平
|
Abstract:
采用电化学/过硫酸盐耦合体系(E-PS过程)降解水中的有机药物卡马西平(CBZ)。实验采用了分批模式进行,研究了温度、过硫酸钠浓度、初始pH值、电压等因素对E-PS过程降解CBZ的影响。反应100 min后,单独过硫酸钠、电解和E-PS过程对卡马西平的降解率分别为25.5%、59.3%、78.1%,TOC去除率分别为8.25%、23.48%、26.68%。升高温度可以有效提高CBZ的降解率。反应100 min后,在288 K,CBZ降解率为60.2%;在298 K,CBZ降解率达到78.1%;而在308 K,CBZ降解率为90.1%。CBZ的降解率随着过硫酸盐浓度的增加而提高。当过硫酸盐浓度为40 g/L时,反应100 min,CBZ降解率达94.7%。初始pH值对CBZ降解率的影响为pH 3.0 >pH 5.0 >pH 7.0;电压对CBZ降解率的影响为6 V >5 V >4 V。
Oxidative degradation of CBZ in aqueous solution was carried out by coupling electrolysis with persulfate. Experiments were carried out under a batch-wise mode to evaluate the influence of various operation parameters on the electrolytic behavior, such as initial acidity of aqueous solution, temperature, voltage, persulfate anion concentration. After one hundred minutes reaction, the degradation rate of CBZ was 25.5%、59.3%、78.1,and the TOC removal rate was 8.25%、23.48%、26.68%, which was carried out by sole persulfate, electrolysis and coupling electrolysis with persulfate, respectively. The degradation efficiency of CBZ was effectively enhanced as temperature increased. The degradation rate of CBZ were 60.2%, 78.1%, 90.1% within one hundred minutes at 288 K, 298 K, 308 K, respectively. The degradation rate of CBZ was increased with concentration of persulfate. When the concentration of sodium persulfate reached 40 grams per liter, CBZ degradation rate was 94.7% within one hundred minutes. The degradation efficiency of CBZ as follows:pH3.0 >pH5.0 >pH7.0 and 6 V >5 V >4 V.