全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

动态血糖序列的精细复合多尺度熵分析

DOI: doi:10.7507/1001-5515.201606015

Keywords: 72 h动态血糖, 血糖波动, 复杂度, 精细复合多尺度熵分析, 平均血糖波动幅度

Full-Text   Cite this paper   Add to My Lib

Abstract:

血糖波动复杂性的研究有助于理解血糖调节系统的内在规律。本文以Ⅱ型糖尿病患者(93人)72 h 动态血糖序列为分析对象,使用多尺度熵分析技术研究动态血糖序列结构的复杂性。针对72 h 动态血糖序列较短的问题,采用了最新改进的精细复合多尺度熵(RCMSE)分析技术,分别观察了基于平均血糖波动幅度(MAGE)和糖化血红蛋白(HbA1c)进行分组的糖尿病患者的血糖波动复杂性。研究发现,MAGE 值大的组其复杂度低,熵值在尺度 1~6(5~30 min)之间的差异具有统计学意义,HbA1c 值高的组其复杂度也较低,但是分组之间的熵值差异没有统计学意义。本文研究结果表明,血糖调控不好(无论从 MAGE 值还是从 HbA1c 值来看),将会带来血糖序列动态结构复杂度的损失。本文所提的 RCMSE 分析技术可为血糖序列波动分析提供一个新的视角,血糖序列复杂度有可能成为血糖波动分析的一个新的生物学指标

References

[1]  1. 刘艳辉(综述), 石泽亚, 刘小明. 重症患者的血糖管理研究进展. 齐齐哈尔医学院学报, 2015(6): 870-872.
[2]  2. Cobelli C, Man C D, Sparacino G, et al. Diabetes: models, signals, and control. IEEE Rev Biomed Eng, 2009, 2(1): 54-96.
[3]  3. 盛冲霄(综述), 黎红华(审校). 氧化应激与糖尿病血糖波动. 医学综述, 2015(5): 854-857.
[4]  4. Su Jianbin, Wang Xueqin, Chen Jinfeng, et al. Glycemic variability in insulin treated type 2 diabetes with well-controlled hemoglobin A1c and its response to further treatment with acarbose. Chinese medical journal, 2011, 124(1): 144-147.
[5]  5. Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA, 2006, 295(14): 1681-1687.
[6]  6. Suh S, Kim J H. Glycemic variability: how do we measure it and why is it important?. Diabetes Metab J, 2015, 39(4): 273-282.
[7]  7. Hill N R, Oliver N S, Choudhary P, et al. Normal reference range for mean tissue glucose and glycemic variability derived from continuous glucose monitoring for subjects without diabetes in different ethnic groups. Diabetes Technol Ther, 2011, 13(9): 921-928.
[8]  8. Fritzsche G, Kohnert K D, Heinke P, et al. The use of a computer program to calculate the mean amplitude of glycemic excursions. Diabetes Technol Ther, 2011, 13(3): 319-325.
[9]  9. Costa M D, Henriques T, Munshi M N, et al. Dynamical glucometry: use of multiscale entropy analysis in diabetes. Chaos, 2014, 24(3): 033139.
[10]  10. Association A D. American diabetes association. diagnosis and classification of diabetes mellitus. diabetes care 29(suppl 1), S43-S48. Diabetes, 2009, 33(Suppl 1): S62-S69.
[11]  11. Cui Xingran, Abduljalil A, Manor B D, et al. Multi-scale glycemic variability: a Link to gray matter atrophy and cognitive decline in type 2 diabetes. PLoS One, 2014, 9(1): e86284.
[12]  12. Weissman A, Binah O. The fractal Nature of blood glucose fluctuations. J Diabetes Complications, 2014, 28(5): 646-651.
[13]  13. Churruca J, Vigil L, Luna E, et al. The route to diabetes: Loss of complexity in the glycemic profile from health through the metabolic syndrome to type 2 diabetes. Diabetes Metab Syndr Obes, 2008, 1: 3-11.
[14]  14. Costa M, Goldberger A L, Peng C K. Multiscale entropy analysis. Int J Numer Methods Eng, 2004, 59(9): 1147-1166.
[15]  15. Chen Jinlong, Chen Pinfan, Wang H M. Decreased complexity of glucose dynamics in diabetes: evidence from multiscale entropy analysis of continuous glucose monitoring system data. Am J Physiol Regul Integr Comp Physiol, 2014, 307(2): R179-R183.
[16]  16. Goldberger A L, Amaral L A, Hausdorff J M, et al. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A, 2002, 99(Suppl 1): 2466-2472.
[17]  17. Goldstein B, Fiser D H, Kelly M M, et al. Decomplexification in critical illness and injury: relationship between heart rate variability, severity of illness, and outcome. Crit Care Med, 1998, 26(2): 352-357.
[18]  18. van Hooijdonk R T, abu-Hanna Ameen, SCHULTZ M J. Glycemic variability is complex--is glucose complexity variable?. Crit Care, 2012, 16(6): 178.
[19]  19. Wu S D, Wu C W, Lin S G, et al. Analysis of complex time series using refined composite multiscale entropy. Phys Lett A, 2014, 378(20): 1369-1374.
[20]  20. Costa M, Peng C K, Goldberger A L, et al. Multiscale entropy analysis of human gait dynamics. Physica A: Statistical Mechanics and its Applications, 2003, 330(1/2): 53-60.
[21]  21. 周健, 贾伟平, 喻明, 等. 应用动态血糖监测系统评估不同糖耐量个体血糖稳定性的特征. 上海医学, 2008, 31(1): 10-13.
[22]  22. 贾伟平. 中国动态血糖监测临床应用指南(2012年版). 慢性病学杂志, 2013, 4(5): 321-330.
[23]  23. Li Qing, Li Li, Li Yong. Enhanced RBC aggregation in type 2 diabetes patients. J Clin Lab Anal, 2015, 29(5): 387-389.
[24]  24. Kohnert K D, Heinke P, Vogt L, et al. Utility of different glycemic control metrics for optimizing management of diabetes. World J Diabetes, 2015, 6(1): 17-29.
[25]  25. Rodbard D. New and improved methods to characterize glycemic variability using continuous glucose monitoring. Diabetes Technol Ther, 2009, 11(9): 551-565.
[26]  26. Wang Jing, Shang Pengjian, Xia Jianan, et al. EMD based refined composite multiscale entropy analysis of complex signals. Physica A: Statistical Mechanics and its Applications, 2015, 421(1): 583-593.
[27]  27. Peng C K, Costa M, Goldberger A L. Adaptive data analysis of complex fluctuation in physiological time series. Adv Adapt Data Anal, 2011, 1(01): 61-70.
[28]  28. Costa M, Goldberger A L, Peng C K. Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlin Soft Matter Phys, 2005, 71(2 Pt 1): 021906.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133