全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

初始压力与支撑刚度对圆窗激振听力补偿影响的数值研究

DOI: doi:10.7507/1001-5515.201611039

Keywords: 人工中耳, 初始压力, 支撑刚度, 圆窗, 有限元分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究初始压力与支撑刚度对圆窗激振式人工中耳听力补偿性能的影响,建立了包括作动器和支撑体在内的人耳力学有限元模型。该模型基于一位无任何听力损伤病史的成年人的右耳,采用微计算机断层扫描技术(Micro-CT)和逆向成型技术建立而成,并通过与相关实验数据进行对比,验证了模型的可靠性。基于该模型,通过在圆窗上施加不同幅值的初始压力和改变支撑体的支撑刚度,对比分析相应的基底膜动态响应变化,研究其对圆窗激振听力补偿性能的影响。结果表明:初始压力的施加将恶化低频段的听力补偿效果,但提高了圆窗激振中高频段的听力补偿性能;相对于现有临床上所用的筋膜支撑作动器的方法,采用刚度较大的钛合金作为支撑结构,将在全频段提升圆窗激振的听力补偿性能

References

[1]  1. 第二次全国残疾人抽样调查办公室. 第二次全国残疾人抽样调查资料. 北京: 中国统计出版社, 2007.
[2]  2. Moore B C J. Cochlear hearing loss: physiological, psychological and technical issues. 2nd ed. Chichester: John Wiley & Sons, 2007: 1-332.
[3]  3. Gan R Z, Dai C, Wang X, et al. A totally implantable hearing system—design and function characterization in 3D computational model and temporal bones. Hear Res, 2010, 263(1/2): 138-144.
[4]  4. Liu Houguang, Rao Zhushi, Huang Xinsheng, et al. An incus-body driving type piezoelectric middle ear implant design and evaluation in 3D computational model and temporal bone. Scientific World Journal, 2014, 2014(4): 121624.
[5]  5. Colletti V, Soli S, Carner M, et al. Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window. Int J Audiol, 2006, 45(10): 600-608.
[6]  6. Sprinzl G, Wolf-Magele A, Schnabl J, et al. The active middle ear implant for the rehabilitation of sensorineural, mixed and conductive hearing losses. Laryngorhinootologie, 2011, 90(9): 560-572.
[7]  7. Arnold A, Stieger C, Candreia C, et al. Factors improving the vibration transfer of the floating mass transducer at the round window. Otol Neurotol, 2010, 31(1): 122-128.
[8]  8. Zhang X, Gan Rong. A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng, 2011, 58(10): 3024-3027.
[9]  9. Maier H, Salcher R, Schwab B, et al. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator. Hear Res, 2013, 301(7): 115-124.
[10]  10. Lupo J E, Koka K, Hyde B J, et al. Physiological assessment of active middle ear implant coupling to the round window in Chinchilla lanigera. Otolaryngol Head Neck Surg, 2011, 145(4): 641-647.
[11]  11. 田佳彬, 饶柱石, 塔娜, 等. 人工中耳悬浮式压电振子的优化设计. 振动与冲击, 2015, 34(5): 135-140.
[12]  12. Zwislocki J. Analysis of the middle-ear function. Part Ⅰ: input impedance. J Acoust Soc Am, 1962, 34(9B): 1514-1523.
[13]  13. 王学林. 蜗窗激励与外耳道激励产生的耳蜗压力差的比较分析. 生物医学工程学杂志, 2012, 29(6): 1109-1113.
[14]  14. Tian Jiabin, Huang Xinsheng, Rao Zhushi, et al. Finite element analysis of the effect of actuator coupling conditions on round window stimulation. J Mech Med Biol, 2015, 15(4): 1550048.
[15]  15. 王应丰, 沈高飞, 塔娜, 等. 声桥系统压电植入振子力学建模及参数优化. 振动与冲击, 2009, 28(3): 108-111.
[16]  16. 刘后广, 塔娜, 饶柱石. 新型人工中耳压电振子设计. 振动与冲击, 2011, 30(7): 112-115, 126.
[17]  17. 王学林, 胡于进. 蜗窗激励评价的有限元计算模型研究. 力学学报, 2012, 44(3): 622-630.
[18]  19. Kringlebotn M, Gundersen T, Krokstad A, et al. Noise-induced hearing losses. Can they be explained by basilar membrane movement?. Acta Otolaryngol Suppl, 1979, 360(sup360): 98-101.
[19]  18. Békésy G V. Experiments in hearing. New York: McGraw-Hill, 1960.
[20]  20. Gundersen T, Skarstein O, Sikkeland T. A study of the vibration of the basilar membrane in human temporal bone preparations by the use of the M?ssbauer effect. Acta Otolaryngol, 1978, 86(3/4): 225-232.
[21]  21. Puria S, Peake W, Rosowski J. Sound-pressure measurements in the cochlear vestibule of human-cadaver ears. J Acoust Soc Am, 1997, 101(5 Pt 1): 2754-2770.
[22]  22. Aibara R, Welsh J, Puria S, et al. Human middle-ear sound transfer function and cochlear input impedance. Hear Res, 2001, 152(1/2): 100-109.
[23]  23. Ghasemi-Nejhad M N, Pourjalali S, Uyema M, et al. Finite element method for active vibration suppression of smart composite structures using piezoelectric materials. J Thermoplast Compos Mater, 2006, 19(3): 309-352.
[24]  24. 刘后广. 新型人工中耳压电振子听力补偿的理论与实验研究. 上海: 上海交通大学, 2011.
[25]  25. Laursen W. Breaking the sound barrier[cochlear implants]. Engineering & Technology, 2006, 1(3): 38-41.
[26]  26. Hong E P, Kim M K, Park I Y, et al. Vibration modeling and design of piezoelectric floating mass transducer for implantable middle ear hearing devices. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2007, 90(8): 1620-1627.
[27]  27. Ma J, Yao W. Research on the distribution of pressure field on the basilar membrane in the passive spiral cochlea. J Mech Med Biol, 2014, 14(04): 1450061.
[28]  28. Sun Q, Gan R Z, Chang K H, et al. Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol, 2002, 1(2): 109-122.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133