2. Moore B C J. Cochlear hearing loss: physiological, psychological and technical issues. 2nd ed. Chichester: John Wiley & Sons, 2007: 1-332.
[3]
3. Gan R Z, Dai C, Wang X, et al. A totally implantable hearing system—design and function characterization in 3D computational model and temporal bones. Hear Res, 2010, 263(1/2): 138-144.
[4]
4. Liu Houguang, Rao Zhushi, Huang Xinsheng, et al. An incus-body driving type piezoelectric middle ear implant design and evaluation in 3D computational model and temporal bone. Scientific World Journal, 2014, 2014(4): 121624.
[5]
5. Colletti V, Soli S, Carner M, et al. Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window. Int J Audiol, 2006, 45(10): 600-608.
[6]
6. Sprinzl G, Wolf-Magele A, Schnabl J, et al. The active middle ear implant for the rehabilitation of sensorineural, mixed and conductive hearing losses. Laryngorhinootologie, 2011, 90(9): 560-572.
[7]
7. Arnold A, Stieger C, Candreia C, et al. Factors improving the vibration transfer of the floating mass transducer at the round window. Otol Neurotol, 2010, 31(1): 122-128.
[8]
8. Zhang X, Gan Rong. A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng, 2011, 58(10): 3024-3027.
[9]
9. Maier H, Salcher R, Schwab B, et al. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator. Hear Res, 2013, 301(7): 115-124.
[10]
10. Lupo J E, Koka K, Hyde B J, et al. Physiological assessment of active middle ear implant coupling to the round window in Chinchilla lanigera. Otolaryngol Head Neck Surg, 2011, 145(4): 641-647.
14. Tian Jiabin, Huang Xinsheng, Rao Zhushi, et al. Finite element analysis of the effect of actuator coupling conditions on round window stimulation. J Mech Med Biol, 2015, 15(4): 1550048.
19. Kringlebotn M, Gundersen T, Krokstad A, et al. Noise-induced hearing losses. Can they be explained by basilar membrane movement?. Acta Otolaryngol Suppl, 1979, 360(sup360): 98-101.
[19]
18. Békésy G V. Experiments in hearing. New York: McGraw-Hill, 1960.
[20]
20. Gundersen T, Skarstein O, Sikkeland T. A study of the vibration of the basilar membrane in human temporal bone preparations by the use of the M?ssbauer effect. Acta Otolaryngol, 1978, 86(3/4): 225-232.
[21]
21. Puria S, Peake W, Rosowski J. Sound-pressure measurements in the cochlear vestibule of human-cadaver ears. J Acoust Soc Am, 1997, 101(5 Pt 1): 2754-2770.
[22]
22. Aibara R, Welsh J, Puria S, et al. Human middle-ear sound transfer function and cochlear input impedance. Hear Res, 2001, 152(1/2): 100-109.
[23]
23. Ghasemi-Nejhad M N, Pourjalali S, Uyema M, et al. Finite element method for active vibration suppression of smart composite structures using piezoelectric materials. J Thermoplast Compos Mater, 2006, 19(3): 309-352.
25. Laursen W. Breaking the sound barrier[cochlear implants]. Engineering & Technology, 2006, 1(3): 38-41.
[26]
26. Hong E P, Kim M K, Park I Y, et al. Vibration modeling and design of piezoelectric floating mass transducer for implantable middle ear hearing devices. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2007, 90(8): 1620-1627.
[27]
27. Ma J, Yao W. Research on the distribution of pressure field on the basilar membrane in the passive spiral cochlea. J Mech Med Biol, 2014, 14(04): 1450061.
[28]
28. Sun Q, Gan R Z, Chang K H, et al. Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol, 2002, 1(2): 109-122.