全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于纳米氧化锌的智能药物载体

DOI: doi:10.7507/1001-5515.201707029

Keywords: 药物载体, 氧化锌, 智能响应, 控制释放, 生物相容性

Full-Text   Cite this paper   Add to My Lib

Abstract:

氧化锌(ZnO)价格低廉,来源广泛,具有良好的生物相容性。更为重要的是,特殊的光电性能赋予纳米 ZnO 许多优良的特性(如:溶解于酸、超声波易渗透、吸收微波、亲/疏水态转变等)。这些优良的特性使得纳米 ZnO 成为制备智能药物载体材料的理想选择。近些年来,基于纳米 ZnO 的智能药物载体的研究也备受关注。因此,本文主要介绍 pH 响应、超声波响应、微波响应以及紫外光响应的基于纳米 ZnO 的智能药物载体药物控制行为及其在体内外实验中的应用效果,同时讨论了纳米 ZnO 的生物相容性,并展望了基于纳米 ZnO 的智能药物载体的发展前景

References

[1]  17. Cai Xiaoli, Luo Yanan, Zhang Weiying, et al. pH-sensitive ZnO quantum dots-doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl Mater Interfaces, 2016, 8(34): 22442-22450.
[2]  18. Zhang Jing, Wu Dan, Li Mengfei, et al. Multifunctional mesoporous silica nanoparticles based on charge-reversal plug-gate nanovalves and acid-decomposable ZnO quantum dots for intracellular drug delivery. ACS Appl Mater Interfaces, 2015, 7(48): 26666-26673.
[3]  19. Ye Daixin, Ma Yingying, Zhao Wei, et al. ZnO-based nanoplatforms for labeling and treatment of mouse tumors without detectable toxic side effects. ACS Nano, 2016, 10(4): 4294-4300.
[4]  20. Huang Xuan, Wu Shanshan, Du Xuezhong. Gated mesoporous carbon nanoparticles as drug delivery system for stimuli-responsive controlled release. Carbon, 2016, 101: 135-142.
[5]  21. Muharnmad F, Guo Mingyi, Qi Wenxiu, et al. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J Am Chem Soc, 2011, 133(23): 8778-8781.
[6]  22. Zhang Haijun, Guo Liting, Ding Shuang, et al. Targeted photo-chemo therapy of malignancy on the chest wall while cardiopulmonary avoidance based on Fe3O4@ZnO nanocomposites. Oncotarget, 2016, 7(24): 36602-36613.
[7]  23. Fini M, Tyler W J. Transcranial focused ultrasound: a new tool for non-invasive neuromodulation. Int Rev Psychiat, 2017, 29(2): 168-177.
[8]  24. Shi Ye, Ma Chongbo, Du Yan, et al. Microwave-responsive polymeric core-shell microcarriers for high-efficiency controlled drug release. J Mater Chem B, 2017, 5(19): 3541-3549.
[9]  25. Qiu Hongjin, Cui Bin, Zhao Weiwei, et al. A novel microwave stimulus remote controlled anticancer drug release system based on Fe3O4@ZnO@mGd(2)O(3):Eu@P(NIPAm-co-MAA) multifunctional nanocarriers. J Mater Chem B, 2015, 3(34): 6919-6927.
[10]  26. Peng Hongxia, Cui Bin, Li Guangming, et al. A multifunctional β-CD-modified Fe3O4@ZnO:Er3+,Yb3+ nanocarrier for antitumor drug delivery and microwave-triggered drug release. Mater Sci Eng C, 2015, 46: 253-263.
[11]  27. Bagheri A, Arandiyan H, Boyer C, et al. Lanthanide-doped upconversion nanoparticles: emerging intelligent light-activated drug delivery systems. Adv Sci, 2016, 3(7): 1500437.
[12]  28. 黄啸, 王文洪, 王梅, 等. 光控释负载吲哚美辛的氧化锌载药微粒的制备与性能. 精细化工, 2017, 34(1): 92-95, 108.
[13]  29. Huang Xiao, Wang Xiaoying, Wang Sichun, et al. UV and dark-triggered repetitive release and encapsulation of benzophenone-3 from biocompatible ZnO nanoparticles potential for skin protection. Nanoscale, 2013, 5(12): 5596-5601.
[14]  30. 黄啸, 郑曦, 易彩霞. 光响应多功能药物载体的制备及其对宫颈癌细胞的抑制作用. 材料导报, 2017, 31(10): 37-40.
[15]  31. Huang Xiao, Zheng Xi, Yi Caixia, et al. P(BA-co-HBA) coated Fe3O4@ZnO nanoparticles as photo-responsive multifunctional drug delivery systems for safer cancer therapy. Nano, 2016, 11(5): 1650057.
[16]  32. Kong Fei, Huang Xiao, Yue Danyang, et al. A biocompatible and magnetic nanocarrier with a safe UV-initiated docetaxel release and cancer secretion removal properties increases therapeutic potential for skin cancer. Mater Sci Eng C, 2017, 76: 579-585.
[17]  33. Choi S J, Choy J H. Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction. Int J Nanomedicine, 2014, 9(2): 261-269.
[18]  34. Saptarshi S R, Duschl A, Lopata A L. Biological reactivity of zinc oxide nanoparticles with mammalian test systems: an overview. Nanomedicine, 2015, 10(13): 2075-2092.
[19]  35. Ivask A, Juganson K, Bondarenko O, et al. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: A comparative review. Nanotoxicology, 2014, 8(S1): 57-71.
[20]  36. 杨霞, 江米足. 纳米氧化锌的毒性作用及机制研究进展. 浙江大学学报:医学版, 2014, 43(2): 218-226,.
[21]  37. Ng C T, Yong L Q, Hande M P, et al. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomedicine, 2017, 2017(12): 1621-1637.
[22]  38. Liu Jing, Zhao Yong, Ge Wei, et al. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through theγ-H2AX and NF-κB signaling pathways. Oncotarget, 2017, 8(26): 42673-42692.
[23]  39. Shalini D, Senthikumar S, Rajaquru P. Effect of size and shape on toxicity of zinc oxide (ZnO) nanomaterials in human peripheral blood lymphocytes. Toxicol Mech Methods, 2017. DOI: 10.1080/15376516.2017.1366609.
[24]  40. Xiong Huanming. ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater, 2013, 25(37, SI): 5329-5335.
[25]  41. Chen Tong, Zhao Tong, Wei Dongfeng, et al. Core-shell nanocarriers with ZnO quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery. Carbohydr Polym, 2013, 92(2): 1124-1132.
[26]  42. Rakhshaei R. Namazi H. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng C, 2017, 73: 456-464.
[27]  1. Karimi M, Ghasemi A, Zangabad P S, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev, 2016, 45(5): 1457-1501.
[28]  2. Kang T, Li Fangyuan, Baik S, et al. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials, 2017, 136: 98-114.
[29]  3. Darvishi B, Farahmand L, Majidzadeh-A K. Stimuli-responsive mesoporous silica NPs as non-viral dual siRNA/chemotherapy carriers for triple negative breast cancer. Mol Ther Nucleic Acids, 2017, 7: 164-180.
[30]  4. Fouladi F, Steffen K J, Mallik S. Enzyme-responsive liposomes for the delivery of anticancer drugs. Bioconjug Chem, 2017, 28(4): 857-868.
[31]  5. Kanmani P, Rhim J W. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr Polym, 2014, 106: 190-199.
[32]  6. Li Zhen, Li Hongmei, Liu Lixiang, et al. A pH-sensitive nanocarrier for co-delivery of doxorubicin and camptothecin to enhance chemotherapeutic efficacy and overcome multidrug resistance in vitro. RSC Adv, 2015, 5(94): 77097-77105.
[33]  7. Barick K C, Nigam S, Bahadur D. Nanoscale assembly of mesoporous ZnO: A potential drug carrier. J Mater Chem, 2010, 20(31): 6446-6452.
[34]  8. Peng Hongxia, Hu Chuanyue, Hu Jilin, et al. Fe3O4@mZnO nanoparticles as magnetic and microwave responsive drug carriers. Micropor Mesopor Mat, 2016, 226: 140-145.
[35]  9. Huang Xiao, Lu Juan, Yue Danyang, et al. Fe3O4@ZnO core-shell nanocomposites for efficient and repetitive removal of low density lipoprotein in plasma and on blood vessel. Nanotechnology, 2015, 26(12): 125101.
[36]  10. Tripathy N, Ahmad R, Ko H A, et al. Enhanced anticancer potency using an acid-responsive ZnO-incorporated liposomal drug-delivery system. Nanoscale, 2015, 7(9): 4088-4096.
[37]  11. El-Mekawy R E, Jassas R S. Recent trends in smart and flexible three-dimensional cross-linked polymers: synthesis of chitosan-ZnO nanocomposite hydrogels for insulin drug delivery. MedChemComm, 2017, 8(5): 897-906.
[38]  12. Wang Yinghui, Song Shuyan, Liu Jianhua, et al. ZnO-functionalized upconverting nanotheranostic agent: Multi-modality imaging-guided chemotherapy with on-demand drug release triggered by pH. Angew Chem Int Edit, 2015, 54(2): 536-540.
[39]  13. Dhivya R, Ranjani J, Rajendhran J, et al. pH responsive curcumin/ZnO nanocomposite for drug delivery. Adv Mater Lett, 2015, 6(6): 505-512.
[40]  14. Vimala K, Shanthi K, Sundarraj S, et al. Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet. J Colloid Interface Sci, 2017, 488: 92-108.
[41]  15. Cai Xiaoli, Luo Yanan, Yan Hongye, et al. pH-responsive ZnO nanocluster for lung cancer chemotherapy. ACS Appl Mater Interfaces, 2017, 9(7): 5739-5747.
[42]  16. Zeng Ke, Li Jin, Zhang Zhaoguo, et al. Lipid-coated ZnO nanoparticles as lymphatic-targeted drug carriers: study on cell-specific toxicity in vitro and lymphatic targeting in vivo. J Mater Chem B, 2015, 3(26): 5249-5260.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133