1. Bjarngard B, Kijewski P, Pashby C. Description of a computer controlled therapy machine. Int J Radiat Oncol Biol Phys, 1977, 2(77): 142-143.
[7]
6. Cotrutz C, Xing L. Segment-based dose optimization using a genetic algorithm. Phys Med Biol, 2003, 48(18): 2987-2998.
[8]
7. Preciado-Walters F, Langer M P, Rardin R L, et al. Column generation for IMRT cancer therapy optimization with implementable segments. Ann Oper Res, 2006, 148(1): 65-79.
[9]
8. Romeijn H E, Ahuja R K, Dempsey J F, et al. A column generation approach to radiation therapy treatment planning using aperture modulation. SIAM J Optim, 2005, 15(3): 838-862.
[10]
9. Men C, Romeijn H E, Ta?kin Z C, et al. An exact approach to direct aperture optimization in IMRT treatment planning. Phys Med Biol, 2007, 52(24): 7333-7352.
[11]
10. Salari E, Men C, Romeijn H E. Accounting for the tongue-and-groove effect using a robust direct aperture optimization approach. Med Phys, 2011, 38(3): 1266-1279.
[12]
17. Romeijn H E, Dempsey J F, Li J G. A unifying framework for multi-criteria fluence map optimization models. Phys Med Biol, 2004, 49(10): 1991-2013.
19. Hoffmann A L, den Hertog D, Siem A Y, et al. Convex reformulation of biologically-based multi-criteria intensity-modulated radiation therapy optimization including fractionation effects. Phys Med Biol, 2008, 53(22): 6345-6362.
[15]
20. Kirkpatrick S, Gelatt C D Jr., Vecchi M P. Optimization by simulated annealing. Science, 1983, 220(4598): 671-680.
[16]
5. Li Y, Yao J, Yao D. Genetic algorithm based deliverable segments optimization for static intensity-modulated radiotherapy. Phys Med Biol, 2003, 48(20): 3353-3374.
[17]
11. Bednarz G, Michalski D, Houser C, et al. The use of mixed-integer programming for inverse treatment planning with pre-defined field segments. Phys Med Biol, 2002, 47(13): 2235-2245.
[18]
12. Salari E, Unkelbach J. A column-generation-based method for multi-criteria direct aperture optimization. Phys Med Biol, 2013, 58(3): 621-639.
[19]
25. Deasy J O, Blanco A I, Clark V H. CERR: a computational environment for radiotherapy research. Med Phys, 2003, 30(5): 979-985.
[20]
15. Byrd R H, Lu P, Nocedal J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5): 1190-1208.
[21]
16. Wu Q, Mohan R, Niemierko A, et al. Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys, 2002, 52(1): 224-235.
[22]
21. Kirkpatrick S, Toulouse G. Configuration space analysis of traveling salesman problem. J Phys, 1985, 46(8): 1277-1292.
[23]
22. Powell M J D. How bad are the BFGS and DFP methods when the objective function is quadratic?. Mathematical Programming , 1985, 34(1): 34-47.
[24]
23. Liu D C, Nocedal J. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 1989, 45(1-3): 503-528.
26. Ahnesj? A, Saxner M, Trepp A. A pencil beam model for photon dose calculation. Med Phys, 1992, 19(2): 263-273.
[27]
27. Dale E, Hellebust T P, Skj?nsberg A, et al. Modeling normal tissue complication probability from repetitive computed tomography scans during fractionated high-dose-rate brachytherapy and external beam radiotherapy of the uterine cervix. Int J Radiat Oncol Biol Phys, 2000, 47(4): 963-971.
[28]
28. Marks L B, Yorke E D, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys, 2010, 76(3 Suppl): S10-S19.