全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

实时动态血糖监测器的设计与实现

DOI: doi:10.7507/1001-5515.201607016

Keywords: 实时动态血糖监测, 校准算法, 移动窗, 可调激励

Full-Text   Cite this paper   Add to My Lib

Abstract:

实时动态血糖监测有助于严格控制血糖水平在正常值范围之内,从而降低糖尿病并发症的风险,提高糖尿病患者的生存质量。针对实际监测过程中传感器、环境噪声等各种因素限制其测量精度的问题,本文提出了一种移动窗双层筛选处理算法结合实时自补偿校准算法的双重校准模式,实现对电流数据的信号漂移补偿,并基于此设计了一种可实时、动态检测血糖变化的监测器。该监测器由可调激励电压模块、电流-电压转换模块、微处理器和无线收发模块组成,其大小仅为 40 mm × 30 mm × 5 mm,重量仅 30 g,便于患者随身佩戴,且设计的通信指令码算法保证了数据传输的安全性和完整性。体外葡萄糖实验表明监测器的电流检测效果良好,在体 5 h 的监测实验表明该监测器可实现对血糖的实时动态监测,与家用血糖仪对比其相对误差在 2.22%~7.17% 之间,证明设计的监测器具有较高的检测精度

References

[1]  16. 林伟兵, 雷声, 韦彩虹, 等. 体域网传感器节点和无线通信技术研究进展. 生物医学工程学杂志, 2012, 29(3): 568-573.
[2]  17. Bequette B. Continuous glucose monitoring: real-time algorithms for calibration, filtering, and alarms. J Diabetes Sci Technol, 2010, 4(2): 404-418.
[3]  18. Shin J J, Holtzclaw K R, Dangui N D, et al. Real time self-adjusting calibration algorithm: US 7, 890, 295 B2. 2011-02-15.
[4]  19. 黄永红, 刘洪英, 田森富, 等. 葡萄糖传感器的实时自调整校准算法研究. 仪器仪表学报, 2016, 37(9): 2053-2060.
[5]  20. 沙宪政. 皮下植入式葡萄糖传感器的研究进展. 国外医学:生物医学工程分册, 2003, 26(1): 42-48.
[6]  21. Gerritsen M, Jansen J, Kros A, et al. Performance of subcutaneously implanted glucose sensors: a review. J Invest Surg, 1998, 11(3): 163-174.
[7]  1. International Diabetes Federation. IDF Diabetes atlas (seventh edition 2015). British Columbia: International Diabetes Federation, 2016.
[8]  2. Vaddiraju S, Burgess D, Tomazos I, et al. Technologies for continuous glucose monitoring: current problems and future promises. J Diabetes Sci Technol, 2010, 4(6): 1540-1562.
[9]  3. American diabetes association. Standards of medical care in diabetes-2010. Diabetes Care, 2010, 33(Suppl): S11-S61.
[10]  4. Donigew K, Budiman E S, Hayter G A. Method and device for early signal attenuation detection using blood glucose measurements: US 8, 676, 513 B2. 2014-03-18.
[11]  5. Liu Zenghe, Cho B, Ouyang T, et al. Miniature amperometric self-powered continuous glucose sensor with linear response. Anal Chem, 2012, 84(7): 3403-3409.
[12]  6. Tan Xi, Chen Sizheng, Yan Xiao, et al. A highly sensitive wide-range weak current detection circuit for implantable glucose monitoring. IEICE Electronics Express, 2016, 13(8):1-10.
[13]  7. van Hooijdonk R T, Leopold J H, Winters T, et al. Point accuracy and reliability of an interstitial continuous glucose-monitoring device in critically ill patients: a prospective study. Critical Care, 2015, 19(1): 1-10.
[14]  8. Laffel L. Improved accuracy of continuous glucose monitoring systems in pediatric patients with diabetes mellitus: results from two studies. Diabetes Technol Ther, 2016, 18(Suppl 2): S223-S233.
[15]  9. Sharifi A, Varsavsky A, Ulloa J, et al. Redundancy in glucose sensing: enhanced accuracy and reliability of an electrochemical redundant sensor for continuous glucose monitoring. J Diabetes Sci Technol, 2016, 10(3): 669-678.
[16]  10. 张亚南, 曾迎凡. 动态葡萄糖传感器控制电路: 中国, 200720105556.2. 2008-01-09.
[17]  11. Bindra D S, Zhang Y, Wilson G S, et al. Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal Chem, 1991, 63(17): 1692-1696.
[18]  12. Zhang Y N. Catheter-free implantable needle biosensor: US 7, 979, 103 B2. 2011-07-12.
[19]  13. Wilson G, Zhang Y, Reach G, et al. Progress toward the development of an implantable sensor for glucose. Clin Chem, 1992, 38(9): 1613-1617.
[20]  14. Kim D, Goldstein B, TANG Wei, et al. Noise analysis and performance comparison of low current measurement systems for biomedical applications. IEEE Trans Biomed Circuits Syst, 2013, 7(1): 52-62.
[21]  15. Kim D, Tang W, Goldstein B, et al. Performance comparison of low current measurement systems for biomedical applications. Proceedings of IEEE International Symposium on Circuits & Systems, 2010: 3469-3472.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133