4. HUANG Y, ZHOU G, ZHENG L, et al. Micro-/Nano-sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage[J]. Nanoscale, 2012, 4(7):2484-2490.
6. LIU X W, OKADA M, MAEDA H, et al. Hydroxyapatite/biodegradable poly(L-lactide-co-ε-caprolactone) composite microparticles as injectable scaffolds by a Pickering emulsion route[J]. Acta Biomater, 2011, 7(2):821-828.
[7]
7. JEGAL S H, PARK J H, KIM J H, et al. Functional composite nanofibers of poly(lactide-co-caprolactone) containing gelatin-apatite bone mimetic precipitate for bone regeneration[J]. Acta Biomater, 2011, 7(4):1609-1617.
[8]
8. HEO S J, KIM S E, WEI J, et al. Fabrication and characterization of novel nano-and micro-HA/PCL composite scaffolds using a modified rapid prototyping process[J]. J Biomed Mater Res A, 2009, 89(1):108-116.
[9]
9. MOHAMED K R, BEHEREI H H, E L BASSYOUNI G T, et al. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(7):4126-4132.
[10]
10. KAVYA K C, DIXIT R, JAYAKUMAR R, et al. Synthesis and characterization of chitosan/chondroitin sulfate/nano-SiO2 composite scaffold for bone tissue engineering[J]. J Biomed Nanotechnol, 2012, 8(1):149-160.
[11]
11. VENKATESAN J, RYU B, SUDHA P N, et al. Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2012, 50(2):393-402.
[12]
12. PATTNAIK S, NETHALA S, TRIPATHI A, et al. Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering[J]. Int J Biol Macromol, 2011, 49(5):1167-1172.
[13]
13. SICCHIERI L G, CRIPPA G E, DE OLIVEIRA P T, et al. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering[J]. J Tissue Eng Regen Med, 2012, 6(2):155-162.
[14]
14. MELCHELS F P W, TONNARELLI B, OLIVARES A L, et al. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding[J]. Biomaterials, 2011, 32(11):2878-2884.
[15]
15. MASTROGIACOMO M, SCAGLIONE S, MARTINETTI R, et al. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics[J]. Biomaterials, 2006, 27(17):3230-3237.
17. LIU X, RAHAMAN M N, FU Q. Bone regeneration in strong porous bioactive glass(13-93) scaffolds with an oriented microstructure implanted in rat calvarial defects[J]. Acta Biomater, 2013, 9(1):4889-4898.
[18]
18. MITSAK A G, KEMPPAINEN J M, HARRIS M T, et al. Effect of polycaprolactone scaffold permeability on bone regeneration in vivo[J]. Tissue Eng Part A, 2011, 17(13-14):1831-1839.
[19]
19. JEONG C G, ZHANG H N, HOLLISTER S J. Three-dimensional poly(1, 8-octanediol-co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes[J]. Acta Biomater, 2011, 7(2):505-514.
[20]
20. FAN J, JIA X L, HUANG Y, et al. Greater scaffold permeability promotes growth of osteoblastic cells in a perfused bioreactor[J]. J Tissue Eng Regen Med, 2013:[Epub ahead of print].
[21]
21. LIU X, RAHAMAN M N, FU Q, et al. Porous and strong bioactive glass(13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions[J]. Acta Biomater, 2012, 8(1):415-423.
[22]
22. LEE K W, WANG S, FOX B C, et al. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography:effects of resin formulations and laser parameters[J]. Biomacromolecules, 2007, 8(4):1077-1084.
[23]
23. SANDINO C, LACROIX D. A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models[J]. Biomech Model Mechanobiol, 2011, 10(4):565-576.
[24]
24. DIAS M R, FERNANDES P R, GUEDES J M, et al. Permeability analysis of scaffolds for bone tissue engineering[J]. J Biomech, 2012, 45(6):938-944.
26. SHIN J H, LEE J W, JUNG J H, et al. Evaluation of cell proliferation and differentiation on a poly(propylene fumarate) 3D scaffold treated with functional peptides[J]. J Mater Sci, 2011, 46(15):5282-5287.
[27]
27. ZHANG H F, LI Z J, FU X, et al. Interactions of bone marrow stromal cells with native and RGD surface modified acellular bone matrix:a biocompatibility study[J]. Arch Med Res, 2013, 44(1):69-74.
[28]
28. SUN X J, PENG W, YANG Z L, et al. Heparin-chitosan-coated acellular bone matrix enhances perfusion of blood and vascularization in bone tissue engineering scaffolds[J]. Tissue Eng Part A, 2011, 17(19-20):2369-2378.
[29]
29. LI J, QU R M, DAI J X, et al. Mechanical and physicochemical properties of xenogeneic bone scaffold materials[J]. J Clin Rehabil Tissue Eng Res, 2008, 12(45):8931-8934.
[30]
30. CHEN Q, YANG Z, SUN S, et al. Adipose-derived stem cells modified genetically in vivo promote reconstruction of bone defects[J]. Cytotherapy, 2010, 12(6):831-840.