全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

脑电信号驱动的个性化情绪音乐播放系统算法研究及初步实现*

DOI: doi:10.7507/1001-5515.20160008

Keywords: 脑电图, 个性化音乐推荐系统, 情绪, 美尔频率倒谱系数, 安卓

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了能实时监测听众的情绪状态变化并据此调整音乐播放列表,本文中,我们基于便携式干电极脑电数据提出了一种脑电驱动的个性化情绪音乐推荐系统的算法框架,并在Android平台上进行了初步开发实现。我们以效价和唤醒度二维情绪模型为基准,将脑电和相应种子歌曲映射到各个情绪坐标象限内,从而建立映射关系。然后应用美尔频率倒谱系数分析音乐库中各歌曲与种子歌曲之间的相似度并进行排序。最后,在播放歌曲阶段,我们通过脑电来识别听众的情绪状态,根据事先获得的情绪状态匹配关系播放并实时调整相应的歌曲曲目列表

References

[1]  1. ECK D, LAMERE P, BERTIN-MAHIEUX T, et al. Automatic generation of social tags for music recommendation[C]// Proceedings of the 22th Annual Conference on Neural Information Processing Systems. Vancouver, Canada, 2008: 385-392.
[2]  2. CASEY M A, VELTKAMP R, GOTO M, et al. Content-based music information retrieval: Current directions and future challenges[J]. Proc IEEE, 2008, 96(4): 668-696.
[3]  3. OLIVER N, FLORES-MANGAS F. MPTrain: a mobile, music and physiology-based personal trainer[C]// Proceedings of the 8th Conference on Human-computer Interaction with Mobile Devices and Services, ACM. Espoo, Finland: 2006: 21-28.
[4]  4. JANSSEN J H, VAN DEN BROEK E L, WESTERINK J H. Tune in to your emotions: a robust personalized affective music player[J]. User Model User-Adap Inter, 2012, 22(3): 255-279.
[5]  5. SATO T G, KAMAMOTO Y, HARADA N, et al. A playback system that synchronizes the musical phrases with listener’s respiration phases[C]// CHI’ 13 Extended Abstracts on Human Factors in Computing Systems. New York, NY: ACM: 1035-1040.
[6]  6. LIU N H, CHIANG C Y, HSU H M. Improving driver alertness through music selection using a mobile EEG to detect brainwaves[J]. Sersors, 2013, 13(7): 8199-8221.
[7]  7. RUSSELL J A. Core affect and the psychological construction of emotion[J]. Psychol Rev, 2003, 110(1): 145-172.
[8]  8. DARWIN C, EKMAN P, PRODGER P. The expression of the emotions in man and animals[M]. 3rd ed. New York: Oxford University Press, USA, 1998.
[9]  9. IZARD C E. Basic emotions, natural kinds, emotion schemas, and a new paradigm[J]. Perspect Psychol Sci, 2007, 2(3): 260-280.
[10]  10. AUCOUTURIER J J, PACHET F. Music similarity measures: What’s the use?[C]// Proceedings of the 3rd International Conference on Music Information Retrieval. Paris, France, 2002: 1-7.
[11]  11. JENSEN J, CHRISTENSEN M, MURTHI M, et al. Evaluation of mfcc estimation techniques for music similarity[C]// Proceedings of the 14th European Signal Processing Conference. Florence, Italy: 2006: 1-5.
[12]  12. 牛滨, 孔令志, 罗森林, 等. 基于MFCC和GMM的个性音乐推荐模型[J]. 北京理工大学学报, 2009, 29(4): 351-355.
[13]  13. LEVINIA E, BICKEL P. The earth mover’s distance is the mallows distance: Some insights from statistics[C]// Proceedings of the 8th IEEE International Conference on Computer Vision. Vancouver, Canada: 2001: 251-256.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133