全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于多通道经验模式分解的脑机接口特征提取

DOI: doi:10.7507/1001-5515.20150081

Keywords: 脑机接口, 皮层脑电图, 脑磁图, 多通道经验模式分解, 固有模态函数, 功率特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对脑机接口(BCI)系统中的多通道非平稳脑电(EEG)信号和脑磁(MEG)信号, 本文提出一种基于多通道经验模式分解(MEMD)与功率特征结合的信号特征提取算法。首先将多通道脑信号经MEMD算法分解为一系列多尺度多元固有模态函数(IMF)近似平稳分量, 然后对每个IMF分量提取功率特征, 并利用主成分分析(PCA)降维处理, 最后使用线性判别分析分类器对信号特征分类。实验采用第三次和第四次国际BCI竞赛的数据进行验证, 对皮层EEG信号和MEG信号运动想象任务的识别正确率分别达到92.0%和46.2%, 均位于竞赛第一名水平。实验结果表明本文所提方法有较好有效性和稳定性, 为脑信号特征提取提供了新思路

References

[1]  1. WOLPAW J R, BIRBAUMER N, MCFARLAND D J, et al. Brain-computer interfaces for communication and control[J]. Clin Neurophysiol, 2002, 113(6):767-791.
[2]  2. HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc R Soc Lond A, 1998, 454(1971):903-995.
[3]  3. PANOULAS K I, HADJILEONTIADIS L J, PANAS S M. Hilbert-Huang Spectrum as a new field for the identification of EEG event related de-/synchronization for BCI applications[C]//30th Annual International Conference of the IEEE, Vancouver:2008:3832-3835.
[4]  4. 王金甲, 周丽娜, 赵玉超.基于MEG的脑机接口特征提取方法研究[J].仪器仪表学报, 2010, 31(7):1460-1465.
[5]  5. LOONEY D, MANDIC D P. Multiscale image fusion using complex extensions of EMD[J]., IEEE Trans Signal Proces, 2009, 57(4):1626-1630.
[6]  6. TANAKA T, MANDIC D P. Complex empirical mode decomposition[J].IEEE Signal Proces Lett, 2007, 14(2):101-104.
[7]  7. RILLING G, FLANDRIN P, GONALVES P, et al. Bivariate empirical mode decomposition[J]. IEEE Signal Proces Lett, 2007, 14(12):936-939.
[8]  8. REHMAN N, MANDIC D P. Empirical mode decomposition for trivariate signals[J]. IEEE Trans Signal Proces, 2010, 58(3):1059-1068.
[9]  9. REHMAN N, MANDIC D P. Multivariate empirical mode decomposition[J]. Proc R Soc A:Math, Phys Eng Sci, 2010, 466(2117):1291-1302.
[10]  10. HUANG N E, WU M L C, LONG S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proc R Soc Lond A:Math, Phys Eng Sci, 2003, 459(2037):2317-2345.
[11]  11. Cannegieter S C, Rosendaal F R, Briet E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses[J]. Circulation, 1994, 89(2):635-641.
[12]  12. 王金甲, 尹涛.基于CSSD-DE通道选择算法的ECoG分类研究.中国生物医学工程学报, 2012, 31(5):712-719.
[13]  13. PARK C, LOONEY D, REHMAN N, et al. Classification of motor imagery BCI using multivariate empirical mode decomposition[J]. IEEE Trans Neur Systems Rehabilit Eng, 2013, 21(1):10-22.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133