全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于互信息与主成分分析的运动想象脑电特征选择算法

DOI: doi:10.7507/1001-5515.20160036

Keywords: 脑机接口, 运动想象脑电, 特征选择, 互信息, 主成分分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对脑机接口中运动想象任务的特征选择问题,提出一种基于互信息与主成分分析的脑电特征选择算法。该算法融入类别信息,用不同运动想象类别条件下特征间的互信息矩阵之和取代传统主成分分析算法中的协方差矩阵,其特征向量表示新的主成分空间内各主成分的方向,特征值则作为评价准则判断主成分维数。对2005年国际BCI竞赛数据集,联合功率谱估计、连续小波变换、小波包分解、Hjorth参数四种方法进行特征提取,采用所提出的算法进行特征选择并与主成分分析算法对比,实验结果表明,所提出算法的降维效果更好,以支持向量机为分类器,相同维数的主成分,所得分类正确率更高

References

[1]  1. WOLPAW J R, BIRBAUMER N, HEETDERKS W J, et al. Brain-computer interface technology:a review of the first international meeting[J]. IEEE Trans Rehabil Eng, 2000, 8(2):164-173.
[2]  2. CHEN Guangyi. Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features[J]. Expert Syst Appl, 2014, 41(5):2391-2394.
[3]  3. GHANBARI A A, KOUSARRIZI M R N, TESHNEHLAB M, et al. Wavelet and Hilbert transform-based brain computer interface[C]//Proceedings of the International Conference on Advances in Computational Tools for Engineering Applications. Zouk Mosbeh:2009:438-442.
[4]  4. WAN B K, LIU Y G, MING D, et al. Feature recognition of multi-class imaginary movements in brain computer interface[C]//Proceedings of the International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems. Hongkong:2009:250-254.
[5]  7. CHANDRASHEKAR G, SAHIN F. A survey on feature selection methods[J]. Computers and Electrical Engineering, 2014, 40(1):16-28.
[6]  8. JOLLIFFE I T. Principal component analysis[M]. New York:Springer, 1986:10-28.
[7]  10. SHANNON C E. A mathematical theory of communication[J]. ACM Sigmobile Mobile Computing and Communications Review, 2001, 5(1):3-55.
[8]  12. BASHASHATI A, FATOURECHI M, WARD R K, et al. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals[J]. J Neural Eng, 2007, 4(2):R32-R57.
[9]  17. 徐宝国,宋爱国,费树岷.在线脑机接口中脑电信号的特征提取与分类方法[J].电子学报,2011,39(5):1025-1030.
[10]  5. PFURTSCHELLER G, LOPES DA SILVA F H. Event-related EEG/MEG synchronization and desynchronization:basic principles[J]. Clin Neurophysiol, 1999, 110(11):1842-1857.
[11]  6. MILLáN JDEL R, MOURI?O J. Asynchronous BCI and local neural classifiers:an overview of the Adaptive Brain Interface project[J]. IEEE Trans Neural Syst Rehabil Eng, 2003, 11(2):159-161.
[12]  9. ARVANEH M, GUAN C, ANG K K, et al. Mutual information-based optimization of sparse spatio-spectral filters in brain-computer interface[J]. Neural Computing and Applications, 2014, 25(3-4):625-634.
[13]  11. SCHLOGL A, GRAIMANN B, PFURTSCHELLER G. BCI Competition III[EB/OL]. http://www.bbci.de/competition/iii/, 2005.
[14]  13. RODRíGUEZ-BERMúDEZ G, GARCíA-LAENCINA P J. Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces[J]. J Med Syst, 2012, 36(Suppl 1):S51-S63.
[15]  14. CORRALEJO R, HORNERO R, ALVAREZ D. Feature selection using a genetic algorithm in a motor imagery-based brain computer interface[C]//Proceedings of the International Conference on Engineering in Medicine and Biology Society. Boston:2011:7703-7706.
[16]  15. HETTIARACHCHI I T, NGUYEN T T, NAHAVANDI S. Motor imagery data classification for BCI application using wavelet packet feature extraction[C]//Proceedings of 21st International Conference on Neural Information Processing. Kuching:2014:519-526.
[17]  16. VIDAURRE C, KR?MER N, BLANKERTZ B, et al. Time domain parameters as a feature for EEG-based Brain-Computer Interfaces[J]. Neural Netw, 2009, 22(9):1313-1319.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133